




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆云南省楚雄市古城二中高三開學(xué)復(fù)習(xí)質(zhì)量檢測(cè)試題數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,直三棱柱的高為4,底面邊長(zhǎng)分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.6422.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.5.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.36.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.127.已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④8.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.9.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)10.在中,,,,則邊上的高為()A. B.2 C. D.11.()A. B. C. D.12.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎(jiǎng).在比賽結(jié)果揭曉之前,四人的猜測(cè)如下表,其中“√”表示猜測(cè)某人獲獎(jiǎng),“×”表示猜測(cè)某人未獲獎(jiǎng),而“○”則表示對(duì)某人是否獲獎(jiǎng)未發(fā)表意見.已知四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的,那么兩名獲獎(jiǎng)?wù)呤莀______.甲獲獎(jiǎng)乙獲獎(jiǎng)丙獲獎(jiǎng)丁獲獎(jiǎng)甲的猜測(cè)√××√乙的猜測(cè)×○○√丙的猜測(cè)×√×√丁的猜測(cè)○○√×14.若、滿足約束條件,則的最小值為______.15.函數(shù)的圖象向右平移個(gè)單位后,與函數(shù)的圖象重合,則_____.16.在中,角,,所對(duì)的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),___.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于x的不等式;(2)當(dāng)時(shí),若對(duì)任意實(shí)數(shù),都成立,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓的離心率為,直線過(guò)橢圓的右焦點(diǎn),過(guò)的直線交橢圓于兩點(diǎn)(均異于左、右頂點(diǎn)).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點(diǎn).若直線交于點(diǎn),直線交于點(diǎn),試判斷是否為定值,若是,求出定值;若不是,說(shuō)明理由.19.(12分)已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.20.(12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.21.(12分)已知不等式對(duì)于任意的恒成立.(1)求實(shí)數(shù)m的取值范圍;(2)若m的最大值為M,且正實(shí)數(shù)a,b,c滿足.求證.22.(10分)已知?jiǎng)訄AE與圓外切,并與直線相切,記動(dòng)圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過(guò)點(diǎn)的直線l交曲線C于A,B兩點(diǎn),若曲線C上存在點(diǎn)P使得,求直線l的斜率k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c2.C【解析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因?yàn)椋?,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【點(diǎn)睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.3.D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.4.C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.5.A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.6.B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B7.C【解析】
分四類情況進(jìn)行討論,然后畫出相對(duì)應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對(duì)于①,在上單調(diào)遞減,所以①正確;對(duì)于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯(cuò)誤;對(duì)于③,由函數(shù)圖象的對(duì)稱性可知③錯(cuò)誤;對(duì)于④,函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.8.D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱是解題的關(guān)鍵.9.D【解析】
求解一元二次不等式化簡(jiǎn)A,求解對(duì)數(shù)不等式化簡(jiǎn)B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.10.C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長(zhǎng),由此求得邊上的高.【詳解】過(guò)作,交的延長(zhǎng)線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.11.A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.12.A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡(jiǎn)可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.乙、丁【解析】
本題首先可根據(jù)題意中的“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目分為四種情況,然后對(duì)四種情況依次進(jìn)行分析,觀察四人所猜測(cè)的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測(cè)正確,則乙,丙,丁猜測(cè)錯(cuò)誤,與題意不符,故甲猜測(cè)錯(cuò)誤;若乙猜測(cè)正確,則依題意丙猜測(cè)無(wú)法確定正誤,丁猜測(cè)錯(cuò)誤;若丙猜測(cè)正確,則丁猜測(cè)錯(cuò)誤;綜上只有乙,丙猜測(cè)不矛盾,依題意乙,丙猜測(cè)是正確的,從而得出乙,丁獲獎(jiǎng).所以本題答案為乙、丁.【點(diǎn)睛】本題是一個(gè)簡(jiǎn)單的合情推理題,能否根據(jù)“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目所給條件分為四種情況并通過(guò)推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題.14.【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點(diǎn),平移直線,當(dāng)直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故答案為:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.15.【解析】
根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導(dǎo)公式求得滿足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個(gè)單位后,得到的函數(shù)解析式為,因?yàn)楹瘮?shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因?yàn)?所以.故答案為:【點(diǎn)睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導(dǎo)公式;誘導(dǎo)公式的靈活運(yùn)用是求解本題的關(guān)鍵;屬于中檔題.16.【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)椋瑒t,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)?,,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)當(dāng)時(shí),利用含有一個(gè)絕對(duì)值不等式的解法,求得不等式的解集.(2)對(duì)分成和兩類,利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,求得的最小值,進(jìn)而求得的取值范圍.【詳解】(1)當(dāng)時(shí),由得由得解:,得∴當(dāng)時(shí),關(guān)于的不等式的解集為(2)①當(dāng)時(shí),,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時(shí),同理求得.綜上所述,的取值范圍為.【點(diǎn)睛】本小題主要考查含有一個(gè)絕對(duì)值不等式的求法,考查利用零點(diǎn)分段法解含有兩個(gè)絕對(duì)值的不等式,屬于中檔題.18.(1)(2)定值為0.【解析】
(1)根據(jù)直線方程求焦點(diǎn)坐標(biāo),即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點(diǎn)坐標(biāo),化簡(jiǎn),再聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡(jiǎn)得結(jié)果.【詳解】(1)因?yàn)橹本€過(guò)橢圓的右焦點(diǎn),所以,因?yàn)殡x心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點(diǎn)睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.19.(1);(2)證明見解析.【解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個(gè)實(shí)根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)?,?dāng)時(shí),在內(nèi)單調(diào)遞減.,當(dāng)時(shí),由,有,此時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,綜上,,所以.(2)由為方程的兩個(gè)實(shí)根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計(jì)算能力.20.(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過(guò)300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過(guò)300瓶的概率p.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時(shí),需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時(shí),需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時(shí),Y>0,由前三年六月份各天
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品銷售工作總結(jié)(15篇)
- 民族代表人士活動(dòng)方案
- 櫻花粘土活動(dòng)方案
- 母嬰孕婦活動(dòng)方案
- 正規(guī)別墅裝修活動(dòng)方案
- 植樹節(jié)夢(mèng)幻花園活動(dòng)方案
- 母親節(jié)大學(xué)生活活動(dòng)方案
- 模擬招聘會(huì)活動(dòng)方案
- 油庫(kù)勞動(dòng)活動(dòng)方案
- 正畸沙龍活動(dòng)方案
- 2022-2023學(xué)年廣西北海市七年級(jí)(下)期末地理試卷(含解析)
- 醫(yī)院戰(zhàn)略管理如何制定醫(yī)院戰(zhàn)略規(guī)劃講座
- 部編版語(yǔ)文二年級(jí)下冊(cè)第4單元童心童趣大單元整體作業(yè)設(shè)計(jì)
- SYB創(chuàng)業(yè)培訓(xùn)游戲模塊2課件
- 娛樂場(chǎng)所文明服務(wù)責(zé)任書
- 獸醫(yī)傳染病學(xué)(山東聯(lián)盟)智慧樹知到答案章節(jié)測(cè)試2023年青島農(nóng)業(yè)大學(xué)
- 鋼結(jié)構(gòu)防腐油漆施工方案
- 第五講社會(huì)建設(shè)
- GB/T 35273-2020信息安全技術(shù)個(gè)人信息安全規(guī)范
- GB/T 20303.1-2006起重機(jī)司機(jī)室第1部分:總則
- GB 18068-2000水泥廠衛(wèi)生防護(hù)距離標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論