湖北省黃岡市、黃石市等八市2025屆高三下學期一模考試數(shù)學試題含解析_第1頁
湖北省黃岡市、黃石市等八市2025屆高三下學期一??荚嚁?shù)學試題含解析_第2頁
湖北省黃岡市、黃石市等八市2025屆高三下學期一??荚嚁?shù)學試題含解析_第3頁
湖北省黃岡市、黃石市等八市2025屆高三下學期一??荚嚁?shù)學試題含解析_第4頁
湖北省黃岡市、黃石市等八市2025屆高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省黃岡市、黃石市等八市2025屆高三下學期一??荚嚁?shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.32.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)3.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.4.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.5.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.6.函數(shù)的圖像大致為()A. B.C. D.7.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.8.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.29.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}10.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減12.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最大值為__________.14.設(shè),分別是橢圓C:()的左、右焦點,直線l過交橢圓C于A,B兩點,交y軸于E點,若滿足,且,則橢圓C的離心率為______.15.定義在上的偶函數(shù)滿足,且,當時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.16.利用等面積法可以推導出在邊長為a的正三角形內(nèi)任意一點到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進行推導,在棱長為a的正四面體內(nèi)任意一點到四個面的距離之和也為定值,則這個定值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足(),數(shù)列的前項和,(),且,.(1)求數(shù)列的通項公式:(2)求數(shù)列的通項公式.(3)設(shè),記是數(shù)列的前項和,求正整數(shù),使得對于任意的均有.18.(12分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對之前加工的100個零件的加工時間進行統(tǒng)計,結(jié)果如下:加工1個零件用時(分鐘)20253035頻數(shù)(個)15304015以加工這100個零件用時的頻率代替概率.(1)求的分布列與數(shù)學期望;(2)劉師傅準備給幾個徒弟做一個加工該零件的講座,用時40分鐘,另外他打算在講座前、講座后各加工1個該零件作示范.求劉師傅講座及加工2個零件作示范的總時間不超過100分鐘的概率.19.(12分)在直角坐標系中,已知直線的直角坐標方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線和直線的極坐標方程;(2)已知直線與曲線、相交于異于極點的點,若的極徑分別為,求的值.20.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設(shè)點;若、、成等比數(shù)列,求的值21.(12分)已知橢圓C的中心在坐標原點,其短半軸長為1,一個焦點坐標為,點在橢圓上,點在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個交點為,當?shù)拿娣e最小時,求的長.22.(10分)已知,(其中).(1)求;(2)求證:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運算求解能力,屬于中檔題.2、C【解析】

求函數(shù)導數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.3、B【解析】

列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎(chǔ)題.4、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.5、B【解析】

奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.6、A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.7、C【解析】

如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.8、A【解析】

設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.9、C【解析】

根據(jù)集合的并集、補集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎(chǔ)題.10、A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.11、C【解析】

先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.12、B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標函數(shù)的解析式,易可得到目標函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.14、【解析】

采用數(shù)形結(jié)合,計算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡可得:則故答案為:【點睛】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長度,考查分析能力以及計算能力,屬中檔題.15、24【解析】

根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標,在平面直角坐標系中畫出函數(shù)圖象,根據(jù)函數(shù)的對稱性可得所有實數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因為為偶函數(shù)且,所以的周期為.因為時,,所以可作出在區(qū)間上的圖象,而方程的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標,結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡圖,可知兩個函數(shù)的圖象在區(qū)間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標之和為,所以,故.因為,所以.故.故答案為:;【點睛】本題考查函數(shù)的奇偶性、周期性、對稱性的應用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16、【解析】

計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點到四個面的距離之和為則故答案為:【點睛】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)().(2),.(3)【解析】

(1)依題意先求出,然后根據(jù),求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結(jié)合數(shù)列性質(zhì)可得數(shù)列相鄰項之間的關(guān)系,從而可求出結(jié)果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數(shù)單調(diào)性可求的范圍,從而列不等式可解.【詳解】解:(1)因為數(shù)列滿足()①;②當時,.檢驗當時,成立.所以,數(shù)列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數(shù)列時首項為1,公差為1的等差數(shù)列,故,.(3)因為.所以,,,,.記,當時,.所以,當時,數(shù)列為單調(diào)遞減,當時,.從而,當時,.因此,.所以,對任意的,.綜上,.【點睛】本題考在數(shù)列通項公式的求法、等差數(shù)列的定義及通項公式、數(shù)列的單調(diào)性,考查考生的邏輯思維能力、運算求解能力以及化歸與轉(zhuǎn)化思想、分類討論思想.18、(1)分布列見解析,;(2)0.8575【解析】

(1)根據(jù)題目所給數(shù)據(jù)求得分布列,并計算出數(shù)學期望.(2)根據(jù)對立事件概率計算公式、相互獨立事件概率計算公式,計算出劉師傅講座及加工個零件作示范的總時間不超過分鐘的概率.【詳解】(1)的分布列如下:202530350.150.300.400.15.(2)設(shè),分別表示講座前、講座后加工該零件所需時間,事件表示“留師傅講座及加工兩個零件示范的總時間不超過100分鐘”,則.【點睛】本小題主要考查隨機變量分布列和數(shù)學期望的求法,考查對立事件概率計算,考查相互獨立事件概率計算,屬于中檔題.19、(1),.(2)【解析】

(1)先將曲線的參數(shù)方程化為直角坐標方程,即可代入公式化為極坐標;根據(jù)直線的直角坐標方程,求得傾斜角,即可得極坐標方程.(2)將直線的極坐標方程代入曲線、可得,進而代入可得的值.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去得,把,代入得,從而得的極坐標方程為,∵直線的直角坐標方程為,其傾斜角為,∴直線的極坐標方程為.(2)將代入曲線的極坐標方程分別得到,則.【點睛】本題考查了參數(shù)方程化為普通方程的方法,直角坐標方程化為極坐標方程的方法,極坐標的幾何意義,屬于中檔題.20、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解析】

(1)由極坐標與直角坐標的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方程中,利用韋達定理得,,可得到,根據(jù)因為,,成等比數(shù)列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,即直線的普通方程為;(2)把的參數(shù)方程代入拋物線方程中,得,由,設(shè)方程的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論