蘇教版2025屆高考數(shù)學(xué)三模試卷含解析_第1頁
蘇教版2025屆高考數(shù)學(xué)三模試卷含解析_第2頁
蘇教版2025屆高考數(shù)學(xué)三模試卷含解析_第3頁
蘇教版2025屆高考數(shù)學(xué)三模試卷含解析_第4頁
蘇教版2025屆高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

蘇教版2025屆高考數(shù)學(xué)三模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.42.已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,,則函數(shù)在區(qū)間上零點的個數(shù)為()A.9 B.10 C.18 D.203.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.4.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.5.已知集合,則=A. B. C. D.6.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.7.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則8.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心9.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.10.設(shè)點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.11.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則12.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.14.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.15.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.16.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計年的銷售量.18.(12分)某企業(yè)對設(shè)備進行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,該項質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.圖:設(shè)備改造前樣本的頻率分布直方圖表:設(shè)備改造后樣本的頻率分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)求圖中實數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進行等級細分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標(biāo)值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機購買兩件產(chǎn)品支付的費用為(單位:元),求的分布列和數(shù)學(xué)期望.19.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對于任意,有且僅有一個零點.20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設(shè)正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?21.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.22.(10分)如圖,在平面直角坐標(biāo)系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準(zhǔn)線與圓C相切.(1)求橢圓E的方程;(2)設(shè)過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當(dāng)時,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標(biāo),由此可得雙曲線的焦點坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點的坐標(biāo),意在考查學(xué)生對這些知識的理解掌握水平.2、B【解析】

由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時,f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.3、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.4、B【解析】

取的中點,連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.5、C【解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.6、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.7、D【解析】

利用線面平行和垂直的判定定理和性質(zhì)定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯;對于,當(dāng)時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.8、B【解析】

解出,計算并化簡可得出結(jié)論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經(jīng)過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數(shù)量積運算在幾何中的應(yīng)用,根據(jù)條件中的角計算是關(guān)鍵.9、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.10、C【解析】

設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時對和的關(guān)系的處理是解題關(guān)鍵.11、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.12、D【解析】

根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】

根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點睛】本題考查算法中的語言,屬于基礎(chǔ)題.14、【解析】

由知x>0,故.令,則.當(dāng)時,;當(dāng)時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.15、(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間16、【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進而表示出內(nèi)切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),中位數(shù)為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預(yù)計年的銷售量約為萬臺.【解析】

(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個矩形底邊的中點值乘以相應(yīng)矩形的面積,相加可得出銷量的平均數(shù),由此可預(yù)計年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個季度的銷售量為(萬臺),由此預(yù)測年的銷售量為萬臺.【點睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.18、(1)(2)詳見解析【解析】

(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費用的所有取值為240,300,360,420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.【詳解】解:(1)據(jù)題意,得所以(2)據(jù)表1分析知,從所有產(chǎn)品中隨機抽一件是一等品、二等品、三等品的概率分別為.隨機變量的所有取值為240,300,360,420,480.隨機變量的分布列為240300360420480所以(元)【點睛】本題考查頻率分布直方圖,頻數(shù)分布表,考查隨機變量的概率分布列和數(shù)學(xué)期望,解題時掌握性質(zhì):頻率分布直方圖中所有頻率和為1.本題考查學(xué)生的數(shù)據(jù)處理能力,屬于中檔題.19、(1)(2)證明見解析【解析】

(1)對函數(shù)求導(dǎo),并設(shè)切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時,當(dāng)x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數(shù)求導(dǎo)得,對分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點.根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時,當(dāng)x充分大時,∴至少有一個零點.∵,①若,則,在上單調(diào)遞增,∴有唯一零點.②若令,得有兩個極值點,∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點.綜上可知,對于任意,有且僅有一個零點.【點睛】本題考查導(dǎo)數(shù)的幾何意義的運用、利用導(dǎo)數(shù)證明函數(shù)的零點個數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意零點存在定理的運用.20、見解析【解析】

根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€,結(jié)合等比數(shù)列通項公式代入化簡,檢驗是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設(shè)正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當(dāng)時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當(dāng)時,滿足成立.【點睛】本題考查了等差數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論