《生物質(zhì)顆粒堆垛內(nèi)自維持陰燃反應(yīng)分析綜述》2200字_第1頁
《生物質(zhì)顆粒堆垛內(nèi)自維持陰燃反應(yīng)分析綜述》2200字_第2頁
《生物質(zhì)顆粒堆垛內(nèi)自維持陰燃反應(yīng)分析綜述》2200字_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

生物質(zhì)顆粒堆垛內(nèi)自維持陰燃反應(yīng)分析綜述生物質(zhì)顆粒在堆積存儲時,與空氣中的氧氣發(fā)生放熱反應(yīng),雖然室溫下氧化反應(yīng)非常緩慢,但如果產(chǎn)生的熱量不能及時散失,會導(dǎo)致材料內(nèi)部溫度升高,當材料內(nèi)部溫度過高時,會進一步引發(fā)陰燃反應(yīng)從而導(dǎo)致火災(zāi)。陰燃是一種低溫、緩慢、無焰的燃燒反應(yīng)形式,由固相燃料表面發(fā)生氧化反應(yīng)放出的熱量維持傳播ADDINEN.CITE<EndNote><Cite><Author>J</Author><Year>1979</Year><RecNum>387</RecNum><DisplayText><styleface="superscript">[6,9]</style></DisplayText><record><rec-number>387</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">387</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>OhlemillerTJ</author><author>BellanJ</author><author>RogersF</author></authors></contributors><titles><title>Amodelofsmolderingcombustionappliedtoflexiblepolyurethanefoams</title><secondary-title>CombustionandFlame</secondary-title></titles><periodical><full-title>CombustionandFlame</full-title></periodical><pages>197-215</pages><volume>36</volume><dates><year>1979</year></dates><isbn>0010-2180</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite><Cite><Author>Steen-Hansen</Author><Year>2018</Year><RecNum>325</RecNum><record><rec-number>325</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">325</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Steen-HansenA</author><author>MikalsenRF</author><author>JensenUE</author></authors></contributors><auth-address>RISEFireResearchTrondheim,Tiller,Norway;WesternNorwayUniversityofAppliedSciences(HVL),Haugesund,Norway;OttovonGuerickeUniversityMagdeburg,Magdeburg,Germany;NorwegianUniversityofScienceandTechnology(NTNU),Trondheim,Norway</auth-address><titles><title>Smoulderingcombustioninloose-fillwoodfibrethermalinsulation:Anexperimentalstudy</title><secondary-title>FireTechnology</secondary-title></titles><periodical><full-title>FireTechnology</full-title></periodical><pages>1585-1608</pages><volume>54</volume><number>6</number><dates><year>2018</year></dates><isbn>1572-8099</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[6,9]。陰燃通常是自維持的反應(yīng)過程,反應(yīng)釋放的熱量足以使該反應(yīng)在沒有外部能量輸入的情況下持續(xù)進行ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2017</Year><RecNum>390</RecNum><DisplayText><styleface="superscript">[10]</style></DisplayText><record><rec-number>390</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456502">390</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>WangHZ</author><author>vanEykPJ</author><author>MedwellPR</author><author>BirzerCH</author><author>TianZF</author><author>PossellM</author></authors></contributors><titles><title>Effectsofoxygenconcentrationonradiation-aidedandself-sustainedsmolderingcombustionofradiatapine</title><secondary-title>Energy&Fuels</secondary-title></titles><periodical><full-title>Energy&Fuels</full-title></periodical><pages>8619-8630</pages><volume>31</volume><number>8</number><section>8619</section><dates><year>2017</year></dates><isbn>0887-0624 1520-5029</isbn><urls></urls><electronic-resource-num>10.1021/acs.energyfuels.7b00646</electronic-resource-num></record></Cite></EndNote>[10]。與有焰燃燒相比,陰燃是在燃料或多孔基體的固體表面發(fā)生氧化反應(yīng)和放熱,反應(yīng)的峰值溫度、升溫速率和傳播速率較低;而有焰燃燒是在燃料周圍的氣相發(fā)生氧化反應(yīng)和放熱ADDINEN.CITE<EndNote><Cite><RecNum>392</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>392</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456535">392</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ReinG</author></authors></contributors><titles><title>Smoulderingcombustionphenomenainscienceandtechnology</title><secondary-title>InternationalReviewofChemicalEngineering</secondary-title></titles><periodical><full-title>InternationalReviewofChemicalEngineering</full-title></periodical><pages>3-18</pages><volume>1</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[11]。陰燃反應(yīng)的峰值溫度通常在500~700°C左右,其平均燃燒熱為6~12kJ/g;有焰燃燒的峰值溫度在1500~1800°C左右,平均燃燒熱為16~30kJ/gADDINEN.CITEADDINEN.CITE.DATA[11-13]。由于這些特性,陰燃的傳播速度較慢,一般在10~30mm/h左右,比有焰燃燒的傳播速度約低兩個數(shù)量級ADDINEN.CITE<EndNote><Cite><RecNum>392</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>392</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456535">392</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ReinG</author></authors></contributors><titles><title>Smoulderingcombustionphenomenainscienceandtechnology</title><secondary-title>InternationalReviewofChemicalEngineering</secondary-title></titles><periodical><full-title>InternationalReviewofChemicalEngineering</full-title></periodical><pages>3-18</pages><volume>1</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[11]。根據(jù)陰燃波傳播方向與氧化劑流動方向的異同,可以分為正向陰燃和反向陰燃。當兩者方向相同時為正向陰燃,方向相反時為反向陰燃ADDINEN.CITE<EndNote><Cite><Author>J</Author><Year>1983</Year><RecNum>386</RecNum><DisplayText><styleface="superscript">[14]</style></DisplayText><record><rec-number>386</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">386</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>OhlemillerTJ</author><author>LuccaDA</author></authors></contributors><titles><title>Anexperimentalcomparisonofforwardandreversesmolderpropagationinpermeablefuelbeds</title><secondary-title>CombustionandFlame</secondary-title></titles><periodical><full-title>CombustionandFlame</full-title></periodical><pages>131-147</pages><volume>54</volume><number>1-3</number><dates><year>1983</year></dates><isbn>0010-2180</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[14]。根據(jù)陰燃的空間燃燒特性,又可以分為水平陰燃和豎直陰燃。目前提出的陰燃模型包括一維和多維模型?,F(xiàn)實中的陰燃傳播是多維且不規(guī)則的,但多維陰燃模型是多個一維模型的混合,而一維陰燃模型的研究較為方便,因此被研究的最多ADDINEN.CITE<EndNote><Cite><Author>鄭克明</Author><Year>2017</Year><RecNum>338</RecNum><DisplayText><styleface="superscript">[15]</style></DisplayText><record><rec-number>338</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">338</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>鄭克明</author></authors><tertiary-authors><author>王德明,</author></tertiary-authors></contributors><titles><title>煤田火區(qū)煤陰燃特性及治理研究</title></titles><keywords><keyword>陰燃特性</keyword><keyword>火風(fēng)壓</keyword><keyword>供氧通道</keyword><keyword>最低供風(fēng)速率</keyword><keyword>堵漏技術(shù)</keyword><keyword>露天礦煤火</keyword></keywords><dates><year>2017</year></dates><publisher>中國礦業(yè)大學(xué)</publisher><work-type>碩士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[15]。迄今為止,已經(jīng)有許多關(guān)于陰燃的研究報道。陰燃是一個受顆粒粒徑、床層滲透率、密度、含水率、初始溫度和火源等影響的復(fù)雜反應(yīng)過程ADDINEN.CITE<EndNote><Cite><Author>Hagen</Author><Year>2010</Year><RecNum>357</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>357</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">357</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>HagenBC</author><author>FretteV</author><author>KleppeG</author><author>ArntzenBJ</author></authors></contributors><auth-address>StordHaugesundUniversityCollege,Bj?rnsonsgt.45,N-5528Haugesund,Norway;;DepartmentofPhysicsandTechnology,UniversityofBergen,Pb.7803,N-5020Bergen,Norway</auth-address><titles><title>Onsetofsmolderingincotton:Effectsofdensity</title><secondary-title>FireSafetyJournal</secondary-title></titles><periodical><full-title>FireSafetyJournal</full-title></periodical><pages>73-80</pages><volume>46</volume><number>3</number><keywords><keyword>Smolder</keyword><keyword>Ignition</keyword><keyword>Cotton</keyword><keyword>Density</keyword></keywords><dates><year>2010</year></dates><isbn>0379-7112</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[16]。在陰燃引燃過程中,熱通量、點火時間、空氣流量等因素是主要研究內(nèi)容。WangADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2016</Year><RecNum>391</RecNum><DisplayText><styleface="superscript">[17]</style></DisplayText><record><rec-number>391</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456521">391</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>WangHZ</author><author>vanEykPJ</author><author>MedwellPR</author><author>BirzerCH</author><author>TianZF</author><author>PossellM</author></authors></contributors><titles><title>Identificationandquantitativeanalysisofsmolderingandflamingcombustionofradiatapine</title><secondary-title>Energy&Fuels</secondary-title></titles><periodical><full-title>Energy&Fuels</full-title></periodical><pages>7666-7677</pages><volume>30</volume><number>9</number><section>7666</section><dates><year>2016</year></dates><isbn>0887-0624 1520-5029</isbn><urls></urls><electronic-resource-num>10.1021/acs.energyfuels.6b00314</electronic-resource-num></record></Cite></EndNote>[17]通過時間和空間溫度分布、質(zhì)量損失規(guī)律和氣體分析對生物質(zhì)顆粒陰燃燃燒和有焰燃燒的起始特性進行了實驗研究,分析了陰燃燃燒與有焰燃燒的區(qū)別,發(fā)現(xiàn)有焰燃燒的峰值溫度、升溫速率和平均質(zhì)量損失速率遠遠高于陰燃燃燒。CarvalhoADDINEN.CITE<EndNote><Cite><Author>Carvalho</Author><Year>2002</Year><RecNum>378</RecNum><DisplayText><styleface="superscript">[18]</style></DisplayText><record><rec-number>378</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">378</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>CarvalhoER</author><author>VerasCAG</author><author>CarvalhoJrJA</author></authors></contributors><auth-address>DepartamentodeEnergia,UniversidadeEstadualPaulista(UNESP),Av.AribertoPereiradaCunhano.333,CEP12516-410,Guaratinguetá,SP,Brazil;;UniversidadedeBras??lia,Bras??lia,DF,Brazil;;InstitutoNacionaldePesquisasEspaciais(INPE),Cach?iraPaulistra,SP,Brazil</auth-address><titles><title>Experimentalinvestigationofsmoulderinginbiomass</title><secondary-title>BiomassandBioenergy</secondary-title></titles><periodical><full-title>BiomassandBioenergy</full-title></periodical><pages>283-294</pages><volume>22</volume><number>4</number><keywords><keyword>Smouldering</keyword><keyword>Biomasscombustion</keyword><keyword>Heattransfer</keyword><keyword>Machaeriumanguwtifolium</keyword></keywords><dates><year>2002</year></dates><isbn>0961-9534</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[18]通過實驗研究了木材的陰燃過程,檢查引發(fā)和控制陰燃過程穩(wěn)定性的參數(shù),發(fā)現(xiàn)供氧和熱損失是陰燃過程自維持的主要參數(shù)。RondaADDINEN.CITE<EndNote><Cite><Author>Ronda</Author><Year>2017</Year><RecNum>337</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>337</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">337</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>RondaA</author><author>DellaZassaM</author><author>BiasinA</author><author>Martin-LaraMA</author><author>CanuP</author></authors></contributors><auth-address>DepartmentofChemicalEngineering,UniversityofGranada,18071Granada,Spain;;DepartmentofIndustrialEngineering,UniversityofPadua,35131Padova,Italy</auth-address><titles><title>Experimentalinvestigationonthesmoulderingofpinebark</title><secondary-title>Fuel</secondary-title></titles><periodical><full-title>Fuel</full-title></periodical><pages>81-94</pages><volume>193</volume><keywords><keyword>Pinebark</keyword><keyword>Smouldering</keyword><keyword>Combustion</keyword><keyword>Biomassself-heating</keyword><keyword>Thermalignitionofbiomass</keyword></keywords><dates><year>2017</year></dates><isbn>0016-2361</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[19]在實驗室條件下對松樹皮樣品進行了幾十克范圍內(nèi)的自熱實驗,研究了顆粒大小、含水率、材料壓實度、加熱速度和儲存幾何形狀對陰燃開始和發(fā)展的影響,結(jié)果表明松樹皮在190~240°C內(nèi)觸發(fā)自熱行為。ReinADDINEN.CITE<EndNote><Cite><Author>Rein</Author><Year>2008</Year><RecNum>364</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>364</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">364</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ReinG</author><author>CohenS</author><author>SimeoniA</author></authors></contributors><auth-address>BRECentreforFireSafetyEngineering,UniversityofEdinburgh,King’sBuildings,AGB,EdinburghEH93JL,UK;;UMRCNRS6134–SPE,UniversitàdiCorsica,France</auth-address><titles><title>Carbonemissionsfromsmoulderingpeatinshallowandstrongfronts</title><secondary-title>ProceedingsoftheCombustionInstitute</secondary-title></titles><periodical><full-title>ProceedingsoftheCombustionInstitute</full-title></periodical><pages><styleface="normal"font="default"charset="178"size="100%">2489-2496</style></pages><volume>32</volume><keywords><keyword>Biomassburning</keyword><keyword>Carbonmonoxide<ce:keyword>Carbondioxide</keyword><keyword>Emissionfactor</keyword><keyword>Smoldering</keyword></keywords><dates><year>2008</year></dates><isbn>1540-7489</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[20]研究了含水率對泥炭陰燃過程的影響,結(jié)果表明含水率較低時生物質(zhì)陰燃會產(chǎn)生更廣泛的熱解前沿,而在高含水率條件下陰燃反應(yīng)可能會熄滅。何芳ADDINEN.CITE<EndNote><Cite><Author>何芳</Author><Year>2014</Year><RecNum>348</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>348</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">348</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>何芳</author><author>易維明</author><author><styleface="normal"font="default"size="100%">李志合</style><styleface="normal"font="default"charset="134"size="100%">,等</style></author></authors></contributors><auth-address>山東理工大學(xué)農(nóng)業(yè)工程和食品科學(xué)學(xué)院;</auth-address><titles><title>生物質(zhì)內(nèi)部燃燒特性的陰燃實驗研究</title><secondary-title>工程熱物理學(xué)報</secondary-title></titles><periodical><full-title>工程熱物理學(xué)報</full-title></periodical><pages>792-795</pages><volume>35</volume><number>04</number><keywords><keyword>生物質(zhì)</keyword><keyword>燃燒</keyword><keyword>陰燃實驗</keyword></keywords><dates><year>2014</year></dates><isbn>0253-231X</isbn><call-num>11-2091/O4</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[21]通過陰燃實驗的方法研究了生物質(zhì)內(nèi)部的燃燒特性,考察了物料種類、含水率、孔隙尺寸對燃燒溫度、干燥前沿及炭氧化前沿的移動速度、裂紋和氣體成分等的影響,發(fā)現(xiàn)物料內(nèi)最高溫度隨燃料種類、孔隙尺寸略有變化,幾乎不隨含水率變化。許多學(xué)者對陰燃傳播過程開展了相關(guān)研究,主要研究不同因素對陰燃傳播規(guī)律及傳播速度的影響。HeADDINEN.CITE<EndNote><Cite><Author>He</Author><Year>2014</Year><RecNum>346</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>346</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">346</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>HeF</author><author>YiWM</author><author>LiYJ</author><author>ZhaJW</author><author>LuoB</author></authors></contributors><auth-address>ShandongUniversityofTechnology,Zibo,Shandong255049,PRChina</auth-address><titles><title>Effectsoffuelpropertiesonthenaturaldownwardsmolderingofpiledbiomasspowder:Experimentalinvestigation</title><secondary-title>BiomassandBioenergy</secondary-title></titles><periodical><full-title>BiomassandBioenergy</full-title></periodical><pages>288-296</pages><volume>67</volume><keywords><keyword>Fueltype</keyword><keyword>Moisturecontent</keyword><keyword>Particlesize</keyword><keyword>Biomass</keyword><keyword>Smoldering</keyword></keywords><dates><year>2014</year></dates><isbn>0961-9534</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[22]為了驗證一維生物質(zhì)陰燃燃燒模型的有效性,通過實驗研究了燃料類型、含水率和粒度對生物質(zhì)粉末自然向下陰燃的影響,發(fā)現(xiàn)炭氧化前沿的傳播速度受碳密度和灰分含量的影響較大,幾乎不受含水量和粒徑的影響。ChenADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2015</Year><RecNum>343</RecNum><DisplayText><styleface="superscript">[23]</style></DisplayText><record><rec-number>343</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">343</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ChenHX</author><author>ReinGu</author><author>LiuNA</author></authors></contributors><auth-address>StateKeyLaboratoryofFireScience,UniversityofScienceandTechnologyofChina,Hefei,Anhui230026,PRChina;;DepartmentofMechanicalEngineering,ImperialCollege,London,UK</auth-address><titles><title>Numericalinvestigationofdownwardsmolderingcombustioninanorganicsoilcolumn</title><secondary-title>InternationalJournalofHeatandMassTransfer</secondary-title></titles><periodical><full-title>InternationalJournalofHeatandMassTransfer</full-title></periodical><pages>253-261</pages><volume>84</volume><keywords><keyword>Self-sustainedsmoldering</keyword><keyword>Criticalmoisturecontent</keyword><keyword>Organicsoil</keyword><keyword>Numericalmodel</keyword></keywords><dates><year>2015</year></dates><isbn>0017-9310</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[23]通過建立一個陰燃向下蔓延通過一根有機土柱的數(shù)值模型,研究發(fā)現(xiàn)影響有機土壤自維持陰燃的主要因素是水分含量、無機物含量、堆積密度和陰燃熱。SmuckerADDINEN.CITE<EndNote><Cite><Author>Smucker</Author><Year>2019</Year><RecNum>322</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>322</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">322</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>SmuckerBD</author><author>MulkyTC</author><author>CowanDA</author><author>NiemeyerKE</author><author>BlunckDL</author></authors></contributors><auth-address>SchoolofMechanical,Industrial,andManufacturingEngineering,OregonStateUniversity,Corvallis,OR,97331,USA</auth-address><titles><title>Effectsoffuelcontentanddensityonthesmolderingcharacteristicsofcelluloseandhemicellulose</title><secondary-title>ProceedingsoftheCombustionInstitute</secondary-title></titles><periodical><full-title>ProceedingsoftheCombustionInstitute</full-title></periodical><pages>4107-4116</pages><volume>37</volume><number>3</number><keywords><keyword>Wildlandfires</keyword><keyword>Smoldering</keyword><keyword>Solidcombustion</keyword></keywords><dates><year>2019</year></dates><isbn>1540-7489</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[24]為確定密度和燃料濃度對纖維素和半纖維素混合物陰燃特性的影響,測量了不同密度和不同比例纖維素樣品的向下陰燃傳播速度和水平陰燃傳播速度,發(fā)現(xiàn)在一定的堆積密度下,陰燃傳播速度隨著纖維素含量的降低而增加。QiADDINEN.CITE<EndNote><Cite><Author>Qi</Author><Year>2016</Year><RecNum>339</RecNum><DisplayText><styleface="superscript">[25]</style></DisplayText><record><rec-number>339</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">339</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>QiGS</author><author>WangDM</author><author>ZhengKM</author><author>TangY</author><author>LuXX</author></authors></contributors><auth-address>KeyLaboratoryofCoalMethaneandFireControl,MinistryofEducation,ChinaUniversityofMiningandTechnology,Xuzhou,China;;SchoolofSafetyEngineering,ChinaUniversityofMiningandTechnology,Xuzhou,China</auth-address><titles><title>Smolderingcombustionofcoalunderforcedairflow:experimentalinvestigation</title><secondary-title>JournalofFireSciences</secondary-title></titles><periodical><full-title>JournalofFireSciences</full-title></periodical><pages>267-288</pages><volume>34</volume><number>4</number><keywords><keyword>Coal</keyword><keyword>forwardsmoldering</keyword><keyword>reversesmoldering</keyword><keyword>forcedairflow</keyword></keywords><dates><year>2016</year></dates><isbn>0734-9041</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[25]為獲得煤的陰燃特性,進行了不同風(fēng)量下豎直正向陰燃和反向陰燃實驗,并對陰燃燃燒過程、速度和溫度進行了分析,結(jié)果表明正向陰燃和反向陰燃的燃燒過程雖然有顯著差異,但陰燃速度相同,均隨空氣流量單調(diào)增加,空氣流量越大,耗氧率越高。一些學(xué)者對陰燃過程進行了數(shù)值模擬研究。賈寶山ADDINEN.CITE<EndNote><Cite><Author>賈寶山</Author><Year>2007</Year><RecNum>366</RecNum><DisplayText><styleface="superscript">[26]</style></DisplayText><record><rec-number>366</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">366</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>賈寶山</author><author>解茂昭</author></authors></contributors><auth-address>大連理工大學(xué)能源與動力學(xué)院,大連理工大學(xué)能源與動力學(xué)院大連116024,遼寧工程技術(shù)大學(xué)安全科學(xué)與工程學(xué)院,阜新123000,大連116024</auth-address><titles><title>聚氨酯泡沫燃料正向陰燃傳播特性的數(shù)值模擬</title><secondary-title><styleface="normal"font="default"charset="134"size="100%">東南大學(xué)學(xué)報(英文版)</style></secondary-title></titles><periodical><full-title>東南大學(xué)學(xué)報(英文版)</full-title></periodical><pages>278-284</pages><volume>23</volume><number>02</number><keywords><keyword>聚氨酯泡沫</keyword><keyword>正向陰燃</keyword><keyword>多孔介質(zhì)</keyword><keyword>陰燃速度</keyword><keyword>數(shù)值模擬</keyword></keywords><dates><year>2007</year></dates><isbn>1003-7985</isbn><call-num>32-1325/N</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[26]建立了聚氨酯泡沫陰燃反應(yīng)的二維兩相流數(shù)學(xué)模型,預(yù)測了固相溫度和固相成分(聚氨酯泡沫、焦炭和灰分)的變化情況,得到了陰燃平均傳播速度和平均最高溫度,研究了入口空氣流速和燃料性能(導(dǎo)熱系數(shù)、比熱、密度和孔徑)對陰燃傳播的影響,結(jié)果表明隨著進氣速度的增加,陰燃速度和陰燃溫度大致呈線性增加,燃料密度是決定陰燃傳播最重要的因素。ZanoniADDINEN.CITE<EndNote><Cite><Author>Zanoni</Author><Year>2019</Year><RecNum>324</RecNum><DisplayText><styleface="superscript">[27]</style></DisplayText><record><rec-number>324</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">324</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ZanoniMAB</author><author>ToreroJL.</author><author>GerhardJI</author></authors></contributors><auth-address>DepartmentofCivilandEnvironmentalEngineering,TheUniversityofWesternOntario,SpencerEngineeringBuilding,Rm.3029,London,OntarioN6A5B9,Canada;;A.JamesClarkSchoolofEngineering,TheUniversityofMaryland,CollegePark,MD20742,USA</auth-address><titles><title>Delineatingandexplainingthelimitsofself-sustainedsmoulderingcombustion</title><secondary-title>CombustionandFlame</secondary-title></titles><periodical><full-title>CombustionandFlame</full-title></periodical><pages>78-92</pages><volume>201</volume><keywords><keyword>Smoulderingcombustion</keyword><keyword>Localthermalnon-equilibrium</keyword><keyword>Porousmedium</keyword><keyword>Energybalance</keyword><keyword>Heatlosses</keyword><keyword>Extinction</keyword></keywords><dates><year>2019</year></dates><isbn>0010-2180</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[27]通過一個一維數(shù)值模型模擬了利用陰燃處理被瀝青污染砂土的情況,量化了陰燃過程中化學(xué)反應(yīng)和傳熱過程在空間和時間上的復(fù)雜相互作用,證實了局部能量平衡在反應(yīng)熄滅時變?yōu)樨撝担帜芰科胶庠谳^早時變?yōu)樨撝?。RostamiADDINEN.CITE<EndNote><Cite><Author>Rostami</Author><Year>2003</Year><RecNum>377</RecNum><DisplayText><styleface="superscript">[28]</style></DisplayText><record><rec-number>377</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">377</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>RostamiA</author><author>MurthyJ</author><author>HajaligolM</author></authors></contributors><auth-address>PhilipMorrisUSA,ResearchCenter,P.O.Box26583,Richmond,VA23261,USA;;DepartmentofMechanicalEngineering,CarnegieMellonUniversity,Pittsburgh,PA15213,USA</auth-address><titles><title>Modelingofasmolderingcigarette</title><secondary-title>JournalofAnalyticalandAppliedPyrolysis</secondary-title></titles><periodical><full-title>JournalofAnalyticalandAppliedPyrolysis</full-title></periodical><pages>281-301</pages><volume>66</volume><number>1-2</number><keywords><keyword>Modeling</keyword><keyword>Smoldering</keyword><keyword>Combustion</keyword><keyword>Cigarettesmoldering</keyword><keyword>Burnvelocity</keyword></keywords><dates><year>2003</year></dates><isbn>0165-2370</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[28]建立了煙絲自然陰燃的瞬態(tài)二維模型,模型中假設(shè)氣相和固相溫度不同,通過相間熱交換相互作用,對不同工況和邊界條件下的陰燃過程進行模擬,研究了燃料密度的變化、焦炭的形成和氧化、陰燃速度和陰燃溫度分布等,發(fā)現(xiàn)陰燃過程主要是由氧氣向燃燒區(qū)的擴散控制的,紙的滲透性對燃燒過程的發(fā)展和維持影響很大。CostaADDINEN.CITE<EndNote><Cite><Author>Costa</Author><Year>2004</Year><RecNum>375</RecNum><DisplayText><styleface="superscript">[29]</style></DisplayText><record><rec-number>375</rec-number><foreign-keys><

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論