傳染病數(shù)學(xué)模型課件教案資料_第1頁
傳染病數(shù)學(xué)模型課件教案資料_第2頁
傳染病數(shù)學(xué)模型課件教案資料_第3頁
傳染病數(shù)學(xué)模型課件教案資料_第4頁
傳染病數(shù)學(xué)模型課件教案資料_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

傳染病模型穩(wěn)定性理論傳染病的隨機感染模型在人群中有病人(帶菌者)和健康人(易感人群),任何兩個人之間的接觸都是隨機的。當(dāng)然健康人與非健康人之間的接觸時是否被感染也是隨機的。這時如何估計平均每天有多少健康人被感染?接觸概率感染概率總的感染人數(shù)一個健康人被其他的所有病人感染的概率一個健康人被一名指定病人感染的概率人群中只分為健康人和病人兩種人群中任何兩人的接觸是相互獨立的。每人平均每天與人接觸。當(dāng)一健康人與一病人接觸時,健康人被感染的概率為模型假設(shè)離散連續(xù)變化是時間的函數(shù)人群中只分為健康人和病人兩種或者易感染者(Susceptible)和已感染者(Infective).病人數(shù)和健康人數(shù)在總?cè)藬?shù)中所占比例分別記為人群中任何兩人的接觸是相互獨立的。每個病人平均每天的有效接觸為常數(shù)變化最大?具有免疫性SIR不具有免疫性SIS隨著時間的變化,如何變化?單調(diào)遞增單調(diào)遞減則0則先單調(diào)遞增達到最大值減小且趨向于零單調(diào)遞增單調(diào)遞減減小且趨向于零單調(diào)遞減至穩(wěn)定性理論設(shè)微分方程,方程右邊不顯含自變量稱之為自治方程。的實根顯然也是該方程的解,稱為方程的平衡點(奇點)如果存在某個鄰域,使得該方程的解在鄰域內(nèi)的某個點出發(fā),滿足則稱平衡點為穩(wěn)定點判定是否為穩(wěn)定點,主要利用直接法若則為穩(wěn)定點若則非穩(wěn)定點的兩個實根稱為該微分方程的平衡點則稱該點為穩(wěn)定點是非線性,這時應(yīng)用泰勒公式,只保留其線性主部,而這時的新方程和原來的方程有相同的穩(wěn)定性。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論