版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)福建華南女子職業(yè)學(xué)院《人工智能與機(jī)器學(xué)習(xí)基礎(chǔ)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的自然語(yǔ)言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項(xiàng)是不正確的?()A.使用預(yù)訓(xùn)練的語(yǔ)言模型,并在特定任務(wù)上進(jìn)行微調(diào)B.從簡(jiǎn)單的句子生成開始,逐漸過渡到復(fù)雜的文章生成C.不使用任何先驗(yàn)知識(shí)或語(yǔ)言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動(dòng)的學(xué)習(xí)D.引入對(duì)抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性2、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)能夠自動(dòng)進(jìn)行邏輯推理和證明。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)解決數(shù)學(xué)定理證明問題的系統(tǒng),以下關(guān)于自動(dòng)推理的描述,正確的是:()A.現(xiàn)有的自動(dòng)推理技術(shù)可以輕松解決所有復(fù)雜的數(shù)學(xué)定理證明問題B.自動(dòng)推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學(xué)習(xí)和適應(yīng)新的推理模式C.結(jié)合機(jī)器學(xué)習(xí)和符號(hào)推理的方法,可以提高自動(dòng)推理系統(tǒng)的能力和靈活性D.自動(dòng)推理在人工智能中的應(yīng)用范圍非常有限,沒有實(shí)際價(jià)值3、在人工智能的模型訓(xùn)練中,過擬合是一個(gè)常見的問題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測(cè)試集上性能很差。為了緩解過擬合,以下哪種方法是有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少模型的復(fù)雜度C.應(yīng)用正則化技術(shù),如L1和L2正則化D.以上都是4、在人工智能的機(jī)器翻譯任務(wù)中,需要將一種語(yǔ)言翻譯成另一種語(yǔ)言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語(yǔ)和特定的文化背景知識(shí)。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機(jī)器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識(shí)圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機(jī)器翻譯D.隨機(jī)選擇翻譯結(jié)果,不考慮準(zhǔn)確性5、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無(wú)需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類型和任務(wù),不能跨越不同領(lǐng)域6、在人工智能的知識(shí)表示方法中,語(yǔ)義網(wǎng)絡(luò)和框架表示是常見的方式。假設(shè)我們要構(gòu)建一個(gè)關(guān)于動(dòng)物分類的知識(shí)系統(tǒng),以下關(guān)于這兩種表示方法的說法,哪一項(xiàng)是正確的?()A.語(yǔ)義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識(shí)B.框架表示難以處理知識(shí)的不確定性和模糊性C.語(yǔ)義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對(duì)象及其關(guān)系D.框架表示在知識(shí)的擴(kuò)展和更新方面較為困難7、在人工智能的藥物研發(fā)中,機(jī)器學(xué)習(xí)可以輔助藥物分子的設(shè)計(jì)和篩選。假設(shè)要開發(fā)一種治療特定疾病的新藥,以下哪種機(jī)器學(xué)習(xí)方法可能最有助于找到潛在的有效分子結(jié)構(gòu)?()A.分類算法B.回歸分析C.聚類分析D.強(qiáng)化學(xué)習(xí)8、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要解決一個(gè)分類問題,數(shù)據(jù)具有高維度和復(fù)雜的非線性關(guān)系,以下關(guān)于算法選擇的描述,正確的是:()A.線性分類算法如邏輯回歸一定能夠處理這種復(fù)雜的數(shù)據(jù),無(wú)需考慮其他算法B.決策樹算法在處理高維度和非線性數(shù)據(jù)時(shí)總是表現(xiàn)最佳C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)對(duì)于處理圖像等具有空間結(jié)構(gòu)的數(shù)據(jù)效果顯著,但對(duì)于一般的高維數(shù)據(jù)可能不太適用D.支持向量機(jī)(SVM)結(jié)合核函數(shù)能夠有效地處理非線性分類問題,是一個(gè)合適的選擇9、可解釋性是人工智能模型面臨的一個(gè)重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對(duì)于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級(jí)的差異10、在人工智能的可解釋性方面,一直是一個(gè)研究熱點(diǎn)。假設(shè)開發(fā)了一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項(xiàng)是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對(duì)模型的決策影響最大B.對(duì)模型的內(nèi)部結(jié)構(gòu)和參數(shù)進(jìn)行詳細(xì)解釋,讓用戶理解模型的工作原理C.通過生成示例來(lái)說明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認(rèn)為模型的準(zhǔn)確性比可解釋性更重要11、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個(gè)特定領(lǐng)域構(gòu)建知識(shí)圖譜,以下關(guān)于數(shù)據(jù)來(lái)源的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報(bào)告,確保知識(shí)的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗(yàn)和知識(shí),以及相關(guān)的數(shù)據(jù)庫(kù)和文檔D.隨機(jī)選擇一些數(shù)據(jù)來(lái)源,不進(jìn)行篩選和評(píng)估12、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種熱門的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個(gè)生成器和一個(gè)判別器組成,它們相互競(jìng)爭(zhēng),共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成13、在人工智能的應(yīng)用中,自動(dòng)駕駛是一個(gè)具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動(dòng)駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項(xiàng)是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進(jìn)行融合,以獲得更準(zhǔn)確的車輛狀態(tài)估計(jì)B.簡(jiǎn)單地將各個(gè)傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學(xué)習(xí)的方法,自動(dòng)學(xué)習(xí)不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重14、人工智能在金融風(fēng)險(xiǎn)管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測(cè)市場(chǎng)風(fēng)險(xiǎn),以下關(guān)于模型評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測(cè)的比例B.召回率,即模型正確識(shí)別出風(fēng)險(xiǎn)的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測(cè)值與實(shí)際值之間的差異15、在計(jì)算機(jī)視覺中,以下哪種任務(wù)需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像分類B.目標(biāo)檢測(cè)C.圖像分割D.圖像生成16、在人工智能的圖像增強(qiáng)技術(shù)中,目的是提高圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的照片進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)的方法,哪一項(xiàng)是不準(zhǔn)確的?()A.直方圖均衡化B.銳化濾波C.中值濾波D.圖像增強(qiáng)不會(huì)引入任何噪聲17、在人工智能的自動(dòng)駕駛倫理問題中,例如在面臨不可避免的事故時(shí)如何做出決策,以下哪種思考角度和原則可能是需要被考慮的?()A.功利主義原則B.道義論原則C.權(quán)利主義原則D.以上都是18、在人工智能的發(fā)展中,算力的需求不斷增長(zhǎng)。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,正確的是:()A.普通的個(gè)人電腦就能夠滿足訓(xùn)練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進(jìn),軟件優(yōu)化的作用不大C.云計(jì)算平臺(tái)可以提供強(qiáng)大的算力支持,幫助研究人員和企業(yè)訓(xùn)練復(fù)雜的人工智能模型D.算力的增長(zhǎng)對(duì)人工智能模型的性能提升沒有實(shí)質(zhì)性的幫助19、在人工智能的圖像識(shí)別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對(duì)衛(wèi)星圖像中的地物進(jìn)行分類,以下哪種方法可能會(huì)與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機(jī)B.決策樹C.聚類分析D.以上都有可能20、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來(lái)衡量模型的性能。假設(shè)一個(gè)圖像分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無(wú)關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)談?wù)勛匀徽Z(yǔ)言生成的方法和應(yīng)用。2、(本題5分)簡(jiǎn)述語(yǔ)音識(shí)別技術(shù)的原理和挑戰(zhàn)。3、(本題5分)簡(jiǎn)述人工智能在建筑設(shè)計(jì)和規(guī)劃中的可能性。4、(本題5分)談?wù)勅斯ぶ悄茉诃h(huán)境科學(xué)中的作用。5、(本題5分)談?wù)勅斯ぶ悄茉诤胶nI(lǐng)域的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)考察一個(gè)基于人工智能的智能民間藝術(shù)比賽組織與傳承系統(tǒng),討論其如何組織比賽并促進(jìn)民間藝術(shù)的傳承。2、(本題5分)考察一個(gè)基于人工智能的智能繪畫產(chǎn)業(yè)競(jìng)爭(zhēng)態(tài)勢(shì)分析系統(tǒng),討論其如何分析繪畫產(chǎn)業(yè)的競(jìng)爭(zhēng)格局。3、(本題5分)以某智能金融投資顧問為例,探討人工智能在資產(chǎn)配置中的策略。4、(本題5分)研究一個(gè)使用人工智能的智能舞蹈服裝與道具設(shè)計(jì)系統(tǒng),分析其如何設(shè)計(jì)符合舞蹈主題的服裝和道具。5、(本題5分)分析一個(gè)利用人工智能進(jìn)行民間藝術(shù)作品版權(quán)保護(hù)的實(shí)例,討論其技術(shù)手段和有效性。四、操作題(本大題共3個(gè)小題,共30分)1、(本題10分)使用Python
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 防雷設(shè)施安裝維護(hù)合同三篇
- 化妝品行業(yè)保安工作總結(jié)
- 兒童游樂設(shè)施設(shè)計(jì)美工工作總結(jié)
- 林業(yè)行業(yè)美工的森林保護(hù)
- 風(fēng)險(xiǎn)防范工作總結(jié)
- 【八年級(jí)下冊(cè)地理粵教版】第8章 珠江三角洲 單元測(cè)試
- 本科生畢業(yè)論文答辯記錄表
- 2025屆揚(yáng)州市高三語(yǔ)文(上)1月質(zhì)量調(diào)研試卷及答案解析
- 創(chuàng)新成果知識(shí)產(chǎn)權(quán)合同(2篇)
- DB33T 2188.4-2019 大型賽會(huì)志愿服務(wù)崗位規(guī)范 第4部分:禮賓接待志愿服務(wù)
- 養(yǎng)老服務(wù)中心裝飾裝修工程施工方案
- 落地式腳手架監(jiān)理實(shí)施細(xì)則
- 上海市金山區(qū)2022-2023學(xué)年中考一模英語(yǔ)試題含答案
- 節(jié)水灌溉供水工程初步設(shè)計(jì)報(bào)告
- 【期末試題】河西區(qū)2018-2019學(xué)年度第一學(xué)期六年級(jí)數(shù)學(xué)期末試題
- 2022年總經(jīng)理年會(huì)發(fā)言稿致辭二
- 警綜平臺(tái)運(yùn)行管理制度
- 立法學(xué)完整版教學(xué)課件全套ppt教程
- 簡(jiǎn)約中國(guó)風(fēng)水墨山水工作總結(jié)通用PPT模板
- 礦山測(cè)量課程設(shè)計(jì)
- 藥廠生產(chǎn)車間現(xiàn)場(chǎng)管理-PPT課件
評(píng)論
0/150
提交評(píng)論