版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年天津市靜海區(qū)高二上學(xué)期12月聯(lián)考數(shù)學(xué)階段性檢測(cè)試卷一、未知(本大題共10小題)1.已知直線l經(jīng)過(guò)兩點(diǎn),則直線l的斜率是(
)A. B. C.3 D.2.在軸上的截距分別是,4的直線方程是A. B.C. D.3.已知直線與直線平行,則實(shí)數(shù)k的值為(
)A.-2 B.2 C. D.4.如圖,空間四邊形中,,點(diǎn)在上,且滿足,點(diǎn)為的中點(diǎn),則(
)A. B.C. D.5.經(jīng)過(guò)點(diǎn)M(2,1)作圓x2+y2=5的切線,則切線方程為()A.x+y-5=0 B.x+y+5=0C.2x+y-5=0 D.2x+y+5=06.若拋物線上的點(diǎn)到焦點(diǎn)的距離為,則它到軸的距離是(
)A. B. C. D.7.已知橢圓的離心率為,則實(shí)數(shù)等于A.2 B.2或 C.2或6 D.2或8.8.無(wú)論k為何值,直線都過(guò)一個(gè)定點(diǎn),則該定點(diǎn)為(
)A. B. C. D.9.點(diǎn)M在圓上運(yùn)動(dòng),點(diǎn)M到直線的最短距離為(
)A.2 B.5 C.8 D.910.已知雙曲線的中心在原點(diǎn),兩個(gè)焦點(diǎn)分別為和,點(diǎn)在雙曲線上且,且的面積為1,則雙曲線的方程為A. B. C. D.二、填空題(本大題共5小題)11.,若,則實(shí)數(shù)值為.12.已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為26,則該橢圓方程為.13.圓被直線所截得的弦長(zhǎng)為.14.已知雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的一條漸近線方程為y=eq\f(\r(3),3)x,且一個(gè)焦點(diǎn)在拋物線y2=8x的準(zhǔn)線上,則該雙曲線的方程為_(kāi)_________.15.已知?jiǎng)狱c(diǎn)P到定點(diǎn)的距離等于它到定直線的距離,則點(diǎn)P的軌跡方程為.三、解答題(本大題共5小題)16.求符合下列條件的曲線方程.(1)焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程;(2)以為漸近線,且過(guò)的雙曲線的標(biāo)準(zhǔn)方程;(3)中心在原點(diǎn),一個(gè)焦點(diǎn)為,且被直線所截得的弦的中點(diǎn)的橫坐標(biāo)為的橢圓的標(biāo)準(zhǔn)方程.17.已知圓心為的圓經(jīng)過(guò)點(diǎn)和,且圓心在直線上,求:(1)求圓心為的圓的標(biāo)準(zhǔn)方程;(2)若過(guò)點(diǎn)的直線被圓所截得弦長(zhǎng)為8,求該直線的方程.18.如圖,在四棱柱中,平面,,.分別為的中點(diǎn),(1)求證:平面;(2)求平面與平面夾角余弦值;(3)求點(diǎn)到平面的距離.19.已知橢圓的方程為,其右頂點(diǎn),離心率.(1)求橢圓的方程;(2)若直線與橢圓交于不同的兩點(diǎn),(,不與左、右頂點(diǎn)重合),且.求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).20.已知在四棱錐中,底面是邊長(zhǎng)為4的正方形,是正三角形,E、F、M、O分別是、、、AD的中點(diǎn),平面.(1)求證:;(2)求點(diǎn)B到平面EFM的距離;(3)在線段上是否存在點(diǎn)N,使得直線與平面EFM所成角的正弦值為?若存在,求線段的長(zhǎng)度,若不存在,說(shuō)明理由.
答案1.【正確答案】B【分析】直接由斜率公式計(jì)算可得.【詳解】由題意可得直線l的斜率.故選:B.2.【正確答案】B根據(jù)直線方程的截距式寫(xiě)出直線方程即可【詳解】根據(jù)直線方程的截距式寫(xiě)出直線方程,化簡(jiǎn)得,故選B.3.【正確答案】A【詳解】解:由兩直線平行的判定可得:,解得,故選:A.4.【正確答案】A【詳解】因?yàn)椋?,又點(diǎn)為的中點(diǎn),所以,所以.故選:A5.【正確答案】C【詳解】點(diǎn)M(2,1)滿足圓x2+y2=5,所以點(diǎn)M(2,1)在圓上,經(jīng)過(guò)點(diǎn)M(2,1)作圓x2+y2=5的切線,則M(2,1)為切點(diǎn),切點(diǎn)和圓心連線的斜率為,則切線斜率為-2.切線方程為:,整理得:2x+y-5=0.故選C.6.【正確答案】B【詳解】拋物線的焦點(diǎn),準(zhǔn)線為,由M到焦點(diǎn)的距離為12,可知M到準(zhǔn)線的距離也為12,故到M到軸的距離是8.故選:B.7.【正確答案】D【詳解】若焦點(diǎn)在軸時(shí),,根據(jù),即,焦點(diǎn)在軸時(shí),,即,所以等于或8,故選D.8.【正確答案】D【詳解】直線方程可化為,則此直線過(guò)直線和直線的交點(diǎn).由解得因此所求定點(diǎn)為.故選:D.9.【正確答案】A【詳解】解析過(guò)程略10.【正確答案】C【詳解】試題分析:由已知.因?yàn)辄c(diǎn)在雙曲線上且,且的面積為,所以,又,所以,即,,,故選C.11.【正確答案】2【詳解】,則,又,則,解得.故212.【正確答案】【詳解】由題意,橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,則橢圓的焦點(diǎn)在y軸上,且,又橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為26,所以,即,所以,所以該橢圓方程為.故13.【正確答案】【詳解】解:圓,即,圓心為,半徑,圓心到直線的距離,所以弦長(zhǎng)為;故14.【正確答案】eq\f(x2,3)-y2=1【詳解】∵雙曲線的一條漸近線方程為y=eq\f(\r(3),3)x,∴eq\f(b,a)=eq\f(\r(3),3),①∵拋物線y2=8x的準(zhǔn)線方程為x=-2,該雙曲線的一個(gè)焦點(diǎn)在拋物線y2=8x的準(zhǔn)線上,∴c=2,而c=eq\r(a2+b2),∴a2+b2=4,②由①②,得a2=3,b2=1,∴雙曲線的方程為eq\f(x2,3)-y2=1.15.【正確答案】【詳解】因?yàn)閯?dòng)點(diǎn)到定點(diǎn)的距離等于它到定直線的距離,由拋物線的定義,可得點(diǎn)的軌跡是以為焦點(diǎn),以及為準(zhǔn)線的拋物線,設(shè)拋物線方程為:,則,即所求軌跡方程為.故答案為.16.【正確答案】(1)或(2)(3)【詳解】(1)直線與坐標(biāo)軸的交點(diǎn)為或,則拋物線的焦點(diǎn)為或,所以焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程為或;(2)以為漸近線的雙曲線方程設(shè)為,,因?yàn)殡p曲線過(guò),則,所以,所以雙曲線的標(biāo)準(zhǔn)方程為;(3)設(shè)橢圓的方程為:,因?yàn)橐粋€(gè)焦點(diǎn)為,則①,又設(shè),,弦中點(diǎn),,,由,兩式相減得,即,即,則,則②,由①②得:,,故橢圓的方程為:.17.【正確答案】(1)(2)或.【詳解】(1)設(shè)圓的標(biāo)準(zhǔn)方程為,得到圓心坐標(biāo)為,半徑為,將與坐標(biāo)代入圓方程得:,,消去,整理得:,將圓心坐標(biāo)代入得:,聯(lián)立①②解得:,,,則圓的標(biāo)準(zhǔn)方程為.(2)當(dāng)直線的斜率存在時(shí),設(shè)過(guò)點(diǎn)的直線,圓半徑為5,弦長(zhǎng)為8,圓心到直線的距離,由,解得,直線方程為,即.當(dāng)直線的斜率不存在時(shí),直線方程為,直線與圓的交點(diǎn)坐標(biāo)為0,2,,直線被圓所截得的弦長(zhǎng)為8;故直線的方程為或.18.【正確答案】(1)證明見(jiàn)解析(2)(3)【詳解】(1)取中點(diǎn),連接,,由是的中點(diǎn),故,且,由是的中點(diǎn),故,且,則有、,故四邊形是平行四邊形,故,又平面,平面,故平面;(2)以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,有A0,0,0、、、、C1,1,0、,則有、、,設(shè)平面與平面的法向量分別為、,則有,,分別取,則有、、,,即、,則,故平面與平面的夾角余弦值為;(3)由,平面的法向量為,則有,即點(diǎn)到平面的距離為.19.【正確答案】(1)(2)證明見(jiàn)解析,.【詳解】(1)右頂點(diǎn)是,離心率為,所以,,,則,橢圓的標(biāo)準(zhǔn)方程為.(2)直線方程與橢圓方程聯(lián)立,得,設(shè)Mx1,,,,,,即,,則,即,整理得,或,均滿足直線或,直線過(guò)定點(diǎn)或2,0(與題意矛盾,舍去)綜上知直線過(guò)定點(diǎn).20.【正確答案】(1)證明見(jiàn)詳解(2)3(3)存在點(diǎn)滿足題意,【詳解】(1)因?yàn)槠矫妫矫?,所以,又底面是正方形,則,且與是平面內(nèi)兩條相交直線,所以平面,平面,所以,又分別是的中點(diǎn),所以,所以.(2)因?yàn)榉謩e是的中點(diǎn),所以,所以平面即是平面,由(1)知平面,則平面,平面,,則,設(shè)點(diǎn)到平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技趨勢(shì)下的電信纜維護(hù)保養(yǎng)策略
- 科技助力小學(xué)數(shù)學(xué)游戲化教學(xué)探索與展望
- 現(xiàn)代科技助力小學(xué)識(shí)字教學(xué)的新發(fā)展
- 公司人力資源管理制度范本三篇
- 2025年福州黎明職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 2025年白城職業(yè)技術(shù)學(xué)院高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 探索師生互動(dòng)在小學(xué)數(shù)學(xué)教育中的重要性
- 探索小學(xué)語(yǔ)文情感教育的實(shí)施途徑
- 科技助力下的安全駕駛與交通文明教育新模式
- 小學(xué)教師如何利用互聯(lián)網(wǎng)資源優(yōu)化教學(xué)
- 2025-2030年中國(guó)清真食品行業(yè)運(yùn)行狀況及投資發(fā)展前景預(yù)測(cè)報(bào)告
- 廣東省茂名市電白區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)生物學(xué)試卷(含答案)
- 《教育強(qiáng)國(guó)建設(shè)規(guī)劃綱要(2024-2035年)》全文
- 山東省濱州市2024-2025學(xué)年高二上學(xué)期期末地理試題( 含答案)
- 2025年河南洛陽(yáng)市孟津區(qū)引進(jìn)研究生學(xué)歷人才50人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年度軍人軍事秘密保護(hù)保密協(xié)議與信息安全風(fēng)險(xiǎn)評(píng)估合同3篇
- 數(shù)字化轉(zhuǎn)型中的職業(yè)能力重構(gòu)
- 運(yùn)用PDCA降低住院患者跌倒-墜床發(fā)生率
- 2025屆高中數(shù)學(xué)一輪復(fù)習(xí)專練:橢圓(含解析)
- 湘教版七年級(jí)下冊(cè)地理第七章《了解地區(qū)》檢測(cè)卷(含答案解析)
- 工法培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論