廣西物流職業(yè)技術(shù)學院《設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷_第1頁
廣西物流職業(yè)技術(shù)學院《設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷_第2頁
廣西物流職業(yè)技術(shù)學院《設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷_第3頁
廣西物流職業(yè)技術(shù)學院《設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷_第4頁
廣西物流職業(yè)技術(shù)學院《設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁廣西物流職業(yè)技術(shù)學院

《設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、目標檢測是計算機視覺中的重要任務(wù)之一,旨在定位和識別圖像中的多個目標。假設(shè)我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復雜場景的目標檢測任務(wù),以下哪種技術(shù)通常能提供更準確的檢測結(jié)果?()A.基于滑動窗口的傳統(tǒng)目標檢測方法B.基于區(qū)域提議的目標檢測算法,如R-CNN系列C.基于回歸的一階段目標檢測算法,如YOLO系列D.基于聚類的目標檢測方法2、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要估計一段視頻中物體的運動速度和方向,以下關(guān)于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復雜場景中能夠準確計算光流B.深度學習中的光流估計網(wǎng)絡(luò)不需要大量的標注數(shù)據(jù)進行訓練C.光流估計的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時空信息的深度學習光流估計方法能夠提高估計的準確性和魯棒性3、在進行圖像增強時,我們常常需要在保持圖像細節(jié)的同時改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波4、計算機視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個擁擠的公共場所中準確檢測出行人,同時要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學習的行人檢測C.基于運動信息的行人檢測D.基于形狀模板的行人檢測5、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實現(xiàn)真實的場景交互。以下關(guān)于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態(tài)進行識別,實現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實場景進行準確的融合和匹配C.計算機視覺技術(shù)可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制6、在計算機視覺的行人重識別任務(wù)中,需要在不同攝像頭拍攝的圖像中識別出同一個行人。假設(shè)我們要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下哪種特征和模型能夠提高識別的準確率和跨攝像頭的泛化能力?()A.基于顏色和紋理的特征B.基于深度學習的全局特征和度量學習C.基于形狀和輪廓的特征D.基于步態(tài)和姿勢的特征7、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設(shè)醫(yī)學圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)8、計算機視覺中的醫(yī)學圖像分析具有重要的臨床應(yīng)用價值。假設(shè)要從一組X光片中檢測出病變區(qū)域,同時要區(qū)分不同類型的病變。以下哪種技術(shù)和方法在醫(yī)學圖像分析中最為常用和有效?()A.形態(tài)學操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運用9、在計算機視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對一張受到嚴重噪聲污染的圖像進行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時很好地保留圖像的細節(jié)B.中值濾波對椒鹽噪聲的去除效果不佳C.基于深度學習的圖像去噪方法可以自適應(yīng)地學習噪聲模式和圖像特征D.圖像去噪不會引入任何新的失真或模糊10、在計算機視覺的動作識別任務(wù)中,識別視頻中的人物動作。假設(shè)要識別一段舞蹈視頻中的動作,以下關(guān)于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別11、在計算機視覺的目標跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標。假設(shè)要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學習的跟蹤D.基于均值漂移的跟蹤12、在計算機視覺的圖像配準任務(wù)中,需要將不同時間或視角拍攝的圖像進行對齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進行精確配準,圖像中存在地形變化和云層遮擋。以下哪種圖像配準方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準B.基于灰度的配準C.基于變換模型的配準D.基于深度學習的配準13、計算機視覺中的遙感圖像分析用于獲取地球表面的信息。假設(shè)要從衛(wèi)星遙感圖像中分析土地利用類型和植被覆蓋情況,同時要克服圖像的大尺度和復雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對象的圖像分析D.基于深度學習的分析14、計算機視覺在安防領(lǐng)域的應(yīng)用可以加強監(jiān)控和預警能力。假設(shè)要通過攝像頭實時監(jiān)測公共場所的異常行為,以下關(guān)于安防計算機視覺應(yīng)用的描述,正確的是:()A.簡單的運動檢測算法就能準確識別各種異常行為B.不考慮人群密度和環(huán)境背景對異常行為檢測的影響C.結(jié)合深度學習和行為分析模型可以提高異常行為檢測的準確性和及時性D.安防領(lǐng)域的計算機視覺系統(tǒng)不需要考慮隱私保護和數(shù)據(jù)安全問題15、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有重要作用。假設(shè)要在VR環(huán)境中實現(xiàn)真實感的物體交互,以下哪種技術(shù)可能對準確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺B.光場成像C.結(jié)構(gòu)光D.運動捕捉16、在計算機視覺中,目標檢測是一項關(guān)鍵任務(wù)。假設(shè)要開發(fā)一個能夠在復雜的城市交通場景中準確檢測出各種車輛類型的系統(tǒng),需要考慮車輛的不同尺寸、形狀和姿態(tài),以及光照、陰影和遮擋等因素的影響。以下哪種目標檢測算法在處理這種復雜場景時具有較好的性能和魯棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO17、在計算機視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測是重要功能之一。假設(shè)要在一個倉庫的監(jiān)控視頻中檢測出異常的人員活動或物品移動。以下哪種異常事件檢測方法在處理這種大規(guī)模視頻數(shù)據(jù)時能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測B.基于統(tǒng)計模型的檢測C.基于深度學習的檢測D.基于人工觀察的檢測18、在計算機視覺的應(yīng)用于自動駕駛領(lǐng)域,需要實時檢測道路上的交通標志和標線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準確地檢測到各種交通標志,并且對光照變化和遮擋具有較強的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學習的檢測方法,結(jié)合多尺度特征C.基于邊緣檢測和形態(tài)學操作的方法D.基于模板匹配和特征點匹配的方法19、計算機視覺中的表情識別用于分析人臉的表情狀態(tài)。假設(shè)要在一個在線教育平臺中檢測學生的學習狀態(tài)。以下關(guān)于表情識別的描述,哪一項是不正確的?()A.可以通過提取面部肌肉的運動特征來判斷表情B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學習表情的特征表示C.表情識別能夠準確區(qū)分細微的表情變化,如困惑和專注D.表情識別不受面部遮擋和光照變化的影響,始終能夠準確判斷20、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標。假設(shè)要跟蹤一只在森林中奔跑的動物,以下關(guān)于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標的模型來預測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標的顯著特征進行跟蹤C.視覺跟蹤算法在目標發(fā)生快速變形或完全遮擋時仍能保持準確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性21、計算機視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學習方法在眼底圖像分析中能夠自動提取特征和進行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學知識標注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷22、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(MLP)架構(gòu)B.采用生成對抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對抗訓練生成高質(zhì)量圖像C.運用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息23、計算機視覺中的視覺跟蹤在監(jiān)控、機器人導航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個機器人需要跟蹤一個移動的物體,同時適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺跟蹤方法能夠提供較好的長期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學習的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運動估計的跟蹤方法24、在計算機視覺的立體視覺任務(wù)中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學習的匹配算法D.以上都是25、在計算機視覺的圖像檢索任務(wù)中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫中查找相似的圖像。假設(shè)要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)提取的特征在圖像檢索中不如手工設(shè)計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準確性和相關(guān)性D.圖像檢索的速度和效率不受數(shù)據(jù)庫大小和特征維度的影響二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在工業(yè)檢測中的應(yīng)用優(yōu)勢。2、(本題5分)簡述圖像的色彩渲染技術(shù)。3、(本題5分)解釋計算機視覺中的動作識別任務(wù)。4、(本題5分)解釋計算機視覺在停車場管理中的技術(shù)。三、分析題(本大題共5個小題,共25分)1、(本題5分)剖析某音樂節(jié)的音樂專輯設(shè)計,討論其如何通過視覺效果和音樂風格傳達音樂節(jié)的特色和魅力。2、(本題5分)分析某珠寶品牌的宣傳冊設(shè)計,研究其如何運用圖片、文字、排版等展示珠寶的品質(zhì)和設(shè)計,提升品牌的高端形象。3、(本題5分)研究某醫(yī)院的標識系統(tǒng)設(shè)計,分析其如何通過清晰的標識和導向,為患者和家屬提供方便,提高醫(yī)院的服

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論