合肥信息技術(shù)職業(yè)學(xué)院《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
合肥信息技術(shù)職業(yè)學(xué)院《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
合肥信息技術(shù)職業(yè)學(xué)院《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
合肥信息技術(shù)職業(yè)學(xué)院《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
合肥信息技術(shù)職業(yè)學(xué)院《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)合肥信息技術(shù)職業(yè)學(xué)院

《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在選擇大數(shù)據(jù)存儲(chǔ)方案時(shí),需要考慮諸多因素。假設(shè)一個(gè)企業(yè)需要存儲(chǔ)大量的半結(jié)構(gòu)化數(shù)據(jù),并且要求能夠快速查詢和更新數(shù)據(jù),以下哪種存儲(chǔ)方案可能不太合適?()A.HBaseB.MongoDBC.MySQLD.Cassandra2、在大數(shù)據(jù)分析中,為了處理不平衡數(shù)據(jù)集,以下哪種方法經(jīng)常被采用?()A.過采樣B.欠采樣C.合成少數(shù)類過采樣技術(shù)D.以上都是3、在大數(shù)據(jù)的數(shù)據(jù)分析中,數(shù)據(jù)探索性分析(EDA)是重要的第一步。假設(shè)我們有一個(gè)新的數(shù)據(jù)集,以下哪個(gè)不是EDA的主要目的?()A.了解數(shù)據(jù)的分布和特征B.發(fā)現(xiàn)數(shù)據(jù)中的異常值C.直接建立數(shù)據(jù)的預(yù)測(cè)模型D.確定數(shù)據(jù)的質(zhì)量和缺失值情況4、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),需要考慮系統(tǒng)的性能優(yōu)化。以下哪種方法對(duì)于提高大數(shù)據(jù)處理系統(tǒng)的性能最有效?()A.增加硬件資源,如內(nèi)存和CPUB.優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu)和算法C.減少數(shù)據(jù)量D.以上方法結(jié)合使用5、在大數(shù)據(jù)環(huán)境中,為了確保數(shù)據(jù)的安全性和隱私性,以下哪種措施是至關(guān)重要的?()A.數(shù)據(jù)加密B.訪問控制C.數(shù)據(jù)備份D.數(shù)據(jù)壓縮6、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行聚類分析,并且數(shù)據(jù)分布較為復(fù)雜,以下哪種聚類算法可能更有效?()A.K-MeansB.DBSCANC.層次聚類D.以上都有可能7、在大數(shù)據(jù)分析中,異常檢測(cè)是一項(xiàng)重要任務(wù)。以下關(guān)于基于統(tǒng)計(jì)的異常檢測(cè)方法和基于機(jī)器學(xué)習(xí)的異常檢測(cè)方法的比較,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通常假設(shè)數(shù)據(jù)服從某種分布,基于機(jī)器學(xué)習(xí)的方法不需要B.基于機(jī)器學(xué)習(xí)的方法能夠處理高維度數(shù)據(jù),基于統(tǒng)計(jì)的方法在高維數(shù)據(jù)上表現(xiàn)不佳C.基于統(tǒng)計(jì)的方法計(jì)算復(fù)雜度較低,基于機(jī)器學(xué)習(xí)的方法計(jì)算復(fù)雜度較高D.基于機(jī)器學(xué)習(xí)的方法檢測(cè)結(jié)果的解釋性通常比基于統(tǒng)計(jì)的方法好8、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),Hadoop生態(tài)系統(tǒng)是常用的框架之一。關(guān)于Hadoop中的MapReduce編程模型,以下描述正確的是?()A.Map階段和Reduce階段的輸出結(jié)果總是相同的結(jié)構(gòu)B.MapReduce只能處理結(jié)構(gòu)化數(shù)據(jù)C.Map階段負(fù)責(zé)數(shù)據(jù)的分解和初步處理,Reduce階段負(fù)責(zé)數(shù)據(jù)的匯總和整合D.MapReduce不適合處理大規(guī)模數(shù)據(jù)9、在進(jìn)行大數(shù)據(jù)分析時(shí),數(shù)據(jù)采樣是一種常用的技術(shù)。假設(shè)我們要對(duì)一個(gè)非常大的數(shù)據(jù)集進(jìn)行分析,但由于資源限制無(wú)法處理全部數(shù)據(jù),以下哪種采樣方法可能導(dǎo)致偏差較大?()A.簡(jiǎn)單隨機(jī)采樣B.分層采樣C.系統(tǒng)采樣D.方便采樣10、大數(shù)據(jù)在醫(yī)療領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于大數(shù)據(jù)在醫(yī)療中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以通過分析大量的醫(yī)療數(shù)據(jù)來預(yù)測(cè)疾病的爆發(fā)B.有助于醫(yī)生為患者制定個(gè)性化的治療方案C.大數(shù)據(jù)在醫(yī)療領(lǐng)域的應(yīng)用可能會(huì)導(dǎo)致患者隱私泄露的風(fēng)險(xiǎn)增加D.由于醫(yī)療數(shù)據(jù)的復(fù)雜性,大數(shù)據(jù)在醫(yī)療中的應(yīng)用效果并不顯著11、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的讀取性能,常常采用緩存機(jī)制。假設(shè)一個(gè)數(shù)據(jù)存儲(chǔ)系統(tǒng)中有一個(gè)熱點(diǎn)數(shù)據(jù)區(qū)域,經(jīng)常被訪問。以下哪種緩存替換策略在這種情況下可能效果較好?()A.LRU(LeastRecentlyUsed)B.FIFO(FirstInFirstOut)C.LFU(LeastFrequentlyUsed)D.Random(隨機(jī))12、大數(shù)據(jù)的處理通常需要分布式計(jì)算框架來提高效率。假設(shè)有一個(gè)需要對(duì)海量文本數(shù)據(jù)進(jìn)行詞頻統(tǒng)計(jì)的任務(wù),數(shù)據(jù)量達(dá)到數(shù)百TB。以下哪種分布式計(jì)算框架最適合處理這種大規(guī)模的數(shù)據(jù)處理任務(wù)?()A.HadoopMapReduceB.SparkC.FlinkD.Storm13、大數(shù)據(jù)處理框架眾多,如Hadoop、Spark等。假設(shè)我們需要對(duì)大規(guī)模的實(shí)時(shí)數(shù)據(jù)進(jìn)行快速處理和分析。以下哪種框架更適合?()A.Hadoop,因其在批處理方面表現(xiàn)出色B.Spark,具有良好的實(shí)時(shí)處理能力和內(nèi)存計(jì)算優(yōu)勢(shì)C.Flink,專注于流處理和事件驅(qū)動(dòng)應(yīng)用D.Storm,適用于對(duì)延遲要求極高的場(chǎng)景14、大數(shù)據(jù)在工業(yè)制造領(lǐng)域有廣泛的應(yīng)用,以下關(guān)于大數(shù)據(jù)在工業(yè)制造中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)現(xiàn)生產(chǎn)過程的智能化監(jiān)控和優(yōu)化B.有助于提高產(chǎn)品質(zhì)量和生產(chǎn)效率C.大數(shù)據(jù)在工業(yè)制造中的應(yīng)用只適用于大型企業(yè),對(duì)中小企業(yè)幫助不大D.能夠預(yù)測(cè)設(shè)備故障,降低維護(hù)成本15、在大數(shù)據(jù)分析中,為了發(fā)現(xiàn)數(shù)據(jù)中的異常模式和離群點(diǎn),以下哪種方法經(jīng)常被使用?()A.聚類分析B.異常檢測(cè)C.關(guān)聯(lián)規(guī)則挖掘D.分類算法二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在大數(shù)據(jù)中,如何進(jìn)行數(shù)據(jù)的語(yǔ)義理解?2、(本題5分)簡(jiǎn)述大數(shù)據(jù)在醫(yī)療機(jī)構(gòu)管理中的價(jià)值。3、(本題5分)解釋大數(shù)據(jù)如何優(yōu)化供應(yīng)鏈管理。三、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的機(jī)器學(xué)習(xí)庫(kù),對(duì)一個(gè)包含客戶投訴數(shù)據(jù)的數(shù)據(jù)集進(jìn)行分類,找出投訴的主要原因和類型。2、(本題5分)有一個(gè)包含城市空氣質(zhì)量監(jiān)測(cè)站數(shù)據(jù)的文件,使用SQL語(yǔ)句和相關(guān)數(shù)據(jù)庫(kù)操作,找出空氣質(zhì)量最差的監(jiān)測(cè)站和對(duì)應(yīng)的污染指標(biāo)。3、(本題5分)用Java編寫一個(gè)程序,處理一個(gè)包含電商用戶瀏覽商品數(shù)據(jù)的大型數(shù)據(jù)集。找出瀏覽時(shí)間最長(zhǎng)的10種商品,并計(jì)算它們的平均瀏覽時(shí)間。4、(本題5分)給定一個(gè)包含氣象衛(wèi)星數(shù)據(jù)的數(shù)據(jù)集,使用數(shù)據(jù)挖掘算法提取氣象變化的規(guī)律和特征。5、(本題5分)使用Python的Hadoop框架,對(duì)一個(gè)包含城市公共自行車使用數(shù)據(jù)的大數(shù)據(jù)集進(jìn)行分析。找出使用頻率最高的10個(gè)租賃點(diǎn),并計(jì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論