版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE
PAGE
1
Student’sName:
Student’sIDNo.:
CollegeName:
ThestudyofQuaternions
Abstract
Findingthedefinitionofquaternions,operationsofquaternions,andpropertiesofquaternions.Todiscusstheproblemifthesetofquaternionstogetherwiththeoperationsofquaternionsisavectorspaceovertherealnumberfield.Todiscusstheproblemifthesetofquaternionstogetherwiththeoperationsofquaternionsisafield.
Introduction
Searchthedefinitionofquaternions,anddiscusssomepropertiesofthem.Thendiscusstheapplicationsusedbyquaternions.
MainResults
AnswersofQ1
1.1Thedefinitionofquaternion:
Quaternionisthemost
simple
hyper-complex
number.
Thecomplex
iscomposedofa
real
plusthe
elementsofI,
including
i^2=-1.
Similarly,quaternion
iscomposedof
realnumber
plusthree
elementsI,
J,
K,
andthey
havethefollowing
relationship:
i^2=j^2=k^2=ijk=-1,
$foureach
number
isalinearcombinationof
1,
I,
J
andK,
thatisquaternion
itcanbeexpressedasa+bi+cj+dk,
wherea,
B,
C,
Disarealnumber.
1.2Operationsofquaternion
1)Quaternionaddition:p+q
With
complexnumbers,
vectorsandmatrices,
thesumoftwo
quaternion
needto
combinedifferentelements
together.
The
addition
followsthe
commutativeandassociativelaws
ofrealandcomplexnumber.
2)Quaternionmultiplication:pq
Betweentwo
toquaternion
inthenumberof
non-commutative
product
usuallyisGlassman
(Hermann
Grassmann)
iscalledthe
product,
the
product
abovehasbeenbriefly
introduced,
complete
type
it
is:
Becauseof
quaternionmultiplicationcannotbechanged
,
pqisnot
equaltoqp.
Glassmanproduct
used
inthedescriptionof
manyother
algebraicfunction.
Thevector
product
is
partofqp:
3)Quaterniondotproduct:
p·q
Thedotproduct
iscalledthe
Euclidean
innerproduct,
quaternion
dotproductisequivalenttoa
four-dimensionalvector
dotproduct.
Thedotproduct
valueis
thecorrespondingelement
numericalvalue
ofeachelementinthep
and
q
.
Thisisbetweenquaternion
canchangetheproduct
number,
andreturnsa
scalar.
Thedotproduct
canuse
Glassmanproduct
form:
This
product
isusefulfor
theelementsof
isolated
fromquaternion
.
Forexample,
ican
comeout
fromp
extraction:
4)Quaternionouterproduct:Outer(p,q)
TheEuclideanouterproduct
isnot
commonlyused;However,
because
theouterproductand
the
product
formofthe
Glassmaninnerproduct
similarity,
theyarealways
to
bementioned:
5)Quaternionevenproduct:Even(p,q)
Quaternionevenproductisnot
commonlyused,
butit
willbementioned,becauseofitssimilarwithodd
product.
Itisapure
symmetricproduct;therefore,
itiscompletely
interchangeable.
6)Quaternioncrossproduct:p×q
Quaternion
crossproduct
alsoknownas
odd
product.
It
is
equivalenttothecrossproductofvectors
,
and
onlyreturn
onevectorvalue:
7)Quaterniontransposition:
Quaterniontransposition’sdefinitionisby.The
sameway
to
constructcomplex
inversestructure:
Aquaternionitselfdotmultiplicationisascalar.quaterniondividedby
ascalar
isequivalentto
the
scalar
multiplicationonthe
countdown,
buttomakeevery
elementofthequaternion
isdividedby
a
divisor.
8)Quaterniondivision:
Quaternion’sunchangeablepropertyleadtothedifferenceofand.Thismeansthatunlessthe
pisa
scalar,
otherwise
youcannotusetheq/p.
9)QuaternionScalar
Department:Scalar(p)
10)Quaternionvectordepartment:Vector(p)
11)QuaternionModulus:|p|
12)Quaternionsignalnumber:Sgn(p)
13)Quaternionargument:Argu(p)
1.3Propertiesofquaternion
Quaternionis
shapedlikea
numberofai+bj+ck+d,
a,
b,c,disarealnumber.
AnswersofQ2
2.Therearetwoways
to
thematrixrepresentationof
quaternion.
Justascomplexnumberscanbe
\o"Complexnumber"
representedasmatrices
,socanquaternions.Thereareatleasttwowaysofrepresentingquaternionsas
\o"Matrix(mathematics)"
matrices
insuchawaythatquaternionadditionandmultiplicationcorrespondtomatrixadditionand
\o"Matrixmultiplication"
matrixmultiplication
.Oneistouse2?×?2
\o"Complexnumber"
complex
matrices,andtheotheristouse4?×?4
\o"Realnumber"
real
matrices.Ineachcase,therepresentationgivenisoneofafamilyoflinearlyrelatedrepresentations.Intheterminologyof
\o"Abstractalgebra"
abstractalgebra
,theseare
\o"Injectivefunction"
injective
\o"Homomorphism"
homomorphisms
from
H
tothe
\o"Matrixring"
matrixrings
M(2,
C)
and
M(4,
R),respectively.
Using2?×?2complexmatrices,thequaternion
a
+
bi
+
cj
+
dk
canberepresentedas
Thisrepresentationhasthefollowingproperties:
Constraininganytwoof
b,
c
and
d
tozeroproducesarepresentationof
\o"Complexnumber"
complexnumbers
.Forexample,setting
c
=
d
=0
producesadiagonalcomplexmatrixrepresentationofcomplexnumbers,andsetting
b
=
d
=0
producesarealmatrixrepresentation.
Thenormofaquaternion(thesquarerootoftheproductwithitsconjugate,aswithcomplexnumbers)isthesquarerootofthe
\o"Determinant"
determinant
ofthecorrespondingmatrix.
[20]
Theconjugateofaquaternioncorrespondstothe
\o"Conjugatetranspose"
conjugatetranspose
ofthematrix.
Byrestrictionthisrepresentationyieldsa
\o"Groupisomorphism"
isomorphism
betweenthesubgroupofunitquaternionsandtheirimage
\o"SU(2)"
SU(2)
.Topologically,theunitquaternionsarethe
\o"3-sphere"
3-sphere
,sotheunderlyingspaceofSU(2)isalsoa3-sphere.ThegroupSU(2)isimportantfordescribing
\o"Spin(physics)"
spin
in
\o"Quantummechanics"
quantummechanics
;see
\o"Paulimatrices"
Paulimatrices
.
Using4?×?4realmatrices,thatsamequaternioncanbewrittenas
Inthisrepresentation,theconjugateofaquaternioncorrespondstothe
\o"Transpose"
transpose
ofthematrix.Thefourthpowerofthenormofaquaternionisthe
\o"Determinant"
determinant
ofthecorrespondingmatrix.Aswiththe2?×?2complexrepresentationabove,complexnumberscanagainbeproducedbyconstrainingthecoefficientssuitably;forexample,asblockdiagonalmatriceswithtwo2?×?2blocksbysetting
c
=
d
=0.
AnswersofQ3
Becausethevectorpartofaquaternionisavectorin
R3,thegeometryof
R3
isreflectedinthealgebraicstructureofthequaternions.Manyoperationsonvectorscanbedefinedintermsofquaternions,andthismakesitpossibletoapplyquaterniontechniqueswhereverspatialvectorsarise.Forinstance,thisistruein
\o"Electrodynamics"
electrodynamics
and
\o"3Dcomputergraphics"
3Dcomputergraphics
.
Fortheremainderofthissection,
i,
j,and
k
willdenotebothimaginary
[18]
basisvectorsof
H
andabasisfor
R3.Noticethatreplacing
i
by?i,
j
by?j,and
k
by?k
sendsavectortoitsadditiveinverse,sotheadditiveinverseofavectoristhesameasitsconjugateasaquaternion.Forthisreason,conjugationissometimescalledthe
spatialinverse.
Choosetwoimaginaryquaternions
p
=
b1i
+
c1j
+
d1k
and
q
=
b2i
+
c2j
+
d2k.Their
\o"Dotproduct"
dotproduct
is
Thisisequaltothescalarpartsof
pq?,
qp?,
p?q,and
q?p.(Notethatthevectorpartsofthesefourproductsaredifferent.)Italsohastheformulas
The
\o"Crossproduct"
crossproduct
of
p
and
q
relativetotheorientationdeterminedbytheorderedbasis
i,
j,and
k
is
(Recallthattheorientationisnecessarytodeterminethesign.)Thisisequaltothevectorpartoftheproduct
pq
(asquaternions),aswellasthevectorpartof?q?p?.Italsohastheformula
Ingeneral,let
p
and
q
bequaternions(possiblynon-imaginary),andwrite
where
ps
and
qs
arethescalarparts,and
and
arethevectorpartsof
p
and
q.Thenwehavetheformula
Thisshowsthatthenoncommutativityofquaternionmultiplicationcomesfromthemultiplicationofpureimaginaryquaternions.Italsoshowsthattwoquaternionscommuteifandonlyiftheirvectorpartsarecollinear.
Forfurtherelaborationonmodelingthree-dimensionalvectorsusingquaternions,see
\o"Quaternionsandspatialrotation"
quaternionsandspatialrotation
.ApossiblevisualisationwasintroducedbyAndrewJ.Hanson.
AnswersofQ4
1)Applicationofquaternionsinthe
attitudeofarigidbody
simulation
With
symmetricgyroscope
asanexample,
discussestheexisting
applicationandthe
quaternions
inthe
attitudeofarigidbody
simulation
problemin.
Thatattitude
withquaternionsdescription
hasasolution
quickly,
won't
appearsingular
advantages,
but
implied
quaternions
equation
constraint
isdifferentialforms,
whichleadtoa
strictlimitonthe
simulation
timestep,
whichlimitsits
applicationin
acertainextent.
Finally
discussestheimplementationofattitudedescription
uniqueness
problem
withquaternions,
and
putforwardtheconceptof"standard"
quaternions.
2)Applicationofunit
quaternionsin
aerialphoto-grammetry
solution
Researchon
unit
quaternionsmethod
in
aerial
applicationof
aerialtriangulation
ineachstep
of
the
algorithm,
andthe
stabilityandapplicability
isevaluated.
Thefirstdescribesthe
methodofunit
quaternions
tectonicrotation
matrixbasedon
relativeorientation,
establishing
modeland
basedon
thenumberofunits
quaternionssettlement
methodforthe
modelisconstructed
basedonthebeammethod;
regional
networkunit
quaternionsrientationandbundleblockadjustment
test,
and
withthetraditional
Eulerangle
toconstructtherotationmatrix
basedschemesarecompared.
Thetestresultsshowthat,
inthe
relativeorientation
test,
iftake
P-Halgorithm,
whichrequiresonlyminimalcontrolpointsto
ensurethatall
testdata
canobtain
thecorrectsolution.
Whilein
thebundleadjustmentmethod,
methodofunitqu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新版通 用規(guī)范對設(shè)計影響交流分享
- 2025年撫順師范高等??茖W(xué)校高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 山西省孝義市高三上學(xué)期入學(xué)摸底考試語文試題(含答案)
- 滬教版(上海)七年級地理第一學(xué)期中國區(qū)域篇(上)1.2《臺灣省》聽課評課記錄
- 中班幼兒系列活動策劃方案五篇
- 2025年科學(xué)儀器行業(yè)技術(shù)革新與發(fā)展前景
- 鋼材購銷合同范文年
- 代償協(xié)議與擔(dān)保合同
- 跨境貿(mào)易線上支付服務(wù)合同
- 投資公司借款的合同樣本
- 醫(yī)保政策與健康管理培訓(xùn)計劃
- 無人化農(nóng)場項目可行性研究報告
- 2024屆上海市金山區(qū)高三下學(xué)期二模英語試題(原卷版)
- 學(xué)生春節(jié)安全教育
- 2024-2025年校長在教研組長和備課組長會議上講話
- 宏觀利率篇:債券市場研究分析框架
- 橋梁頂升移位改造技術(shù)規(guī)范
- 六年級語文(上冊)選擇題集錦
- 《游戲界面設(shè)計專題實踐》課件-知識點5:圖標(biāo)繪制準(zhǔn)備與繪制步驟
- MOOC 材料科學(xué)基礎(chǔ)-西安交通大學(xué) 中國大學(xué)慕課答案
- 復(fù)產(chǎn)復(fù)工試題含答案
評論
0/150
提交評論