![2024年智能超表面技術(shù)白皮書(shū):信道建模與仿真(英文版)-智能超表面技術(shù)聯(lián)盟(RISTA)_第1頁(yè)](http://file4.renrendoc.com/view12/M03/3D/3B/wKhkGWeMlNeAT-IXAACAiElNDd8772.jpg)
![2024年智能超表面技術(shù)白皮書(shū):信道建模與仿真(英文版)-智能超表面技術(shù)聯(lián)盟(RISTA)_第2頁(yè)](http://file4.renrendoc.com/view12/M03/3D/3B/wKhkGWeMlNeAT-IXAACAiElNDd87722.jpg)
![2024年智能超表面技術(shù)白皮書(shū):信道建模與仿真(英文版)-智能超表面技術(shù)聯(lián)盟(RISTA)_第3頁(yè)](http://file4.renrendoc.com/view12/M03/3D/3B/wKhkGWeMlNeAT-IXAACAiElNDd87723.jpg)
![2024年智能超表面技術(shù)白皮書(shū):信道建模與仿真(英文版)-智能超表面技術(shù)聯(lián)盟(RISTA)_第4頁(yè)](http://file4.renrendoc.com/view12/M03/3D/3B/wKhkGWeMlNeAT-IXAACAiElNDd87724.jpg)
![2024年智能超表面技術(shù)白皮書(shū):信道建模與仿真(英文版)-智能超表面技術(shù)聯(lián)盟(RISTA)_第5頁(yè)](http://file4.renrendoc.com/view12/M03/3D/3B/wKhkGWeMlNeAT-IXAACAiElNDd87725.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ReconfigurableIntelligentSurface
TechnologyWhitePaper:
ChannelModellingandSimulation
RISTECHAlliance
Nov.2024
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
I
Contributorsarelistedasfollows.
Companies
Contributors
BeijingUniversityofPostsand
Telecommunications
ZhangJianhua
(jhzhang@)
ZhangYuxiang
(zhangyx@)
GongHuiwen
(birdsplan@)
ZhangJiwei
(rediaose@)
ZhangShiyu
(zhangsy@)
ChinaMobile
YuanYifei
(yuanyifei@)
SuXin
(suxin@)
ZTECorporation
DouJianwu
(dou.jianwu@)
ZhaoYajun
(zhao.yajun1@)
JianMengnan
(jian.mengnan@)
SoutheastUniversity
LiXiao
(li_xiao@)
SangJian
(sangjian@)
TangWankai
(tangwk@)
JinShi
(jinshi@)
BeijingJiaotongUniversity
HeRuisi
(ruisi.he@)
AiBo
(boai@
)
YuanYuan
(22110033@
)
ChinaTelecom
ChengZhenqiao
(chengzq@)
LiNanxi
(linanxi@)
ChinaUnicom
LiuQiuyan
(liuqy95@)
ZhaoMingyang
(zhaomy65@)
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
II
Preface
Benefitingfromtherecentbreakthroughinmeta-surfacetechnologyandvastresearchofmulti-inputmulti-output(MIMO)technology,reconfigurableintelligentsurface(RIS)hasbecomeapotentialenablingtechnologyof6Gmobilenetworkstobestudiedin3GPPstartingfromJune2025.Oneimportantaspectoftechnologystudyin3GPPistheperformanceevaluationwherechannelmodelsandsimulationmethodologiesarethefundamentalblockstobeagreedupon.Differentfromactivenodessuchaslowpowernodes,orfromsensingobjects,RISdevicesarequasi-passive,e.g.,withoutpoweramplifiersoractivefilters,butwithregularshapesandsmoothsurfaces.AllthesemeanthatthechannelmodelingandsimulationmethodologyusedfortraditionalmobilenetworksorforintegratedsensingandcommunicationscannotbedirectlyusedbyRIS.
ThewhitepaperisdevotedtothechannelmodelingandsimulationmethodologyforRISstudy,withthepurposeofsettingabaselinefortheperformanceevaluationofRISin3GPP6Gstudynextyear.
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
III
Contents
1.DeploymentScenarios 1
2.RISTypes&Assumption 5
3.ChannelModellingMethodology 7
3.1.GeneralFramework 7
3.2.RISPhysicalModel 11
3.2.1.RISphysicalmodelbasedonequivalentradiationpattern 12
3.2.2.ElectromagneticRCSmodel 13
3.2.3.Cosineradiationpatternmodel 25
3.3.ModelsforRISChannel 26
3.3.1.Pathlossmodel 28
3.3.2.Fastfadingmodel 29
3.3.3.Modelcomplexityreductionmethods 33
3.3.4.Optionalfeatures 36
4.EvaluationParametersforRISChannel 37
4.1.Largescaleparametersupdate 37
4.2.DelaySpread(DS) 38
4.3.RicianKFactor 39
5.System-LevelSimulationAssumptionforCalibration 40
5.1.SimulationAssumption 40
5.1.1.Networklayoutmodel 40
5.1.2.Propagationmodel 45
5.1.3.Antennaandbeamformingpatternmodelling 46
5.1.4.Othersimulationparameters 49
5.2.SimulationMethodology 50
6.Conclusions 52
7.Reference 53
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
1
1.DeploymentScenarios
ReconfigurableIntelligentSurface(RIS)isoneofthemostpromisingtechniquesduetoitspotentialcapabilityofestablishingalowcostandlowpowerconsumptioncommunicationenvironment.Basedonconfigurablemeta-materials,RISiscapableofadjustingtheimpingingwirelesssignal’sphaseor/andamplitude,andthencontrolitspropagationdirection,whichmakesthedynamicallyfluctuatingwirelesspropagationenvironmentprogrammable.
Tillnow,aseriousofRISprototypeshavebeenlaunchedbydifferentcollegesandcompanies,meantime,anabundantoftestsandverificationsforRISprototypeshavebeendoneandpromisingcoverage/capacitygaincanbeobservedundervariousofscenarios.AlltheseprogressesrevealthepotentialcapabilityofRISforfuturewirelessnetworks.
TopromotethecommercialimplementationofRISinpracticalnetwork,oneofthemostimportantissuesistoidentifythehighvaluedeploymentscenariosforRIS.Fromoperator’sperspective,themostpromisingusageofRISistoenhancethecoverageandcapacity,sincetheyarethekeyfactorsthatanoperatorconsiderswhencommercializingcellularcommunicationnetworksduetoitsdirectimpactonservicequalityaswellasCAPEXandOPEX.Thus,thedeploymentscenariosforRIShavebeenstudiedbasedonalistofcharacteristics.Thefollowingscenariosaredefinedforthepurposeofpotentialevaluation.
Table1-1SummaryofpotentialRISdeploymentscenarios
Scenarios
Diagramofthescenario
Descriptionofthescenario
Enhanced
featureinthe
scenario
Outdoorblind
areacoverage
enhancement
(OCE)
NLOS
Reflectionpath
Staticorsemi-
staticand
dynamicplane
Outdoorcoverage
2
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
Outdoorwide
anglecoverage
enhancement
(OACE)
LOS
Activearray
element
Dynamicplane
Radiationangle
Energy
conservation
Indoorcoverage
enhancement
(InCE)
NLOS
Reflectionpath
Staticorsemi-
staticand
dynamicplane
Indoorcoverage
O2I/I2O
[1]
coverage
enhancement(O2I/I2OCE)
O2I:
NLOS
Transmission
path
Staticorsemi-
staticand
dynamicplane
Transmittance
Interference
shield
I2O:
Lowattitude
coverage
enhancement
(LACE)
CollaborationofNLOSandLOSReflectionpathDynamicplane
SensingPositioning
Outdoor
throughput
enhancement
(OTE)
SU-MIMO:
MU-MIMO:
Collaborationof
NLOSandLOS
Reflectionpath
Staticorsemi-
staticand
dynamicplane
MIMO
Spacedivision
multiple
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
3
Proposal1:RIScouldbeconsideredasastartingpointforprioritizeddeploymentinthefollowingscenarios:
lOutdoorstaticorsemi-staticcoverageenhancementinFR2
lIndoorstaticorsemi-staticcoverageenhancementinFR2
lO2I/I2Ostaticorsemi-staticcoverageenhancementinFR2
lOutdoordynamiccoverageenhancementinFR2
lIndoordynamiccoverageenhancementinFR2
lO2I/I2OdynamiccoverageenhancementinFR2
lLowattitudedynamiccoverageenhancementinFR2
lOutdoorthroughputenhancementinFR2,etc.
ThefollowingtableofEvaluationparametersforRISdeploymentscenariosisconsidered.(M)indicatesavaluemandatoryforevaluation,(O)indicatesoptionalforevaluation.
Table1-2EvaluationparametersforRISdeploymentscenarios
Parameters
Value
Themainaffectedscenarios
Transmittersandreceivers’properties
UE/BS
Locations
UE/BSlocationsareselectedinthecorrespondingcommunication
scenario
All
BS
configuration
BSconfigurationdecidesthesupportedRIStype
OACE
UE
performance
Receivingdirection
ALL
RIS
properties
RISsLocations
Horizontalposition,height,distancefromBS
ALL
Pitchangle
Variouspitchanglefordifferentapplications
LACE
Area(m2)
0.5,1,2
ALL
Martial
Nonopaqueandopaque
O2I/I2OCE
Angle
resolution
5°(M),30°(O)
LACE,OTE
4
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
Signal
properties
Center
frequency
26GHz(M),10GHz(O),sub6GHz(O)
ALL
Bandwidth
Fullband(M),Fixnarrowband(O)
ALL
Waveform
Continueswave(M),Pulsewave(O)
ALL
UEvelocity
3km/h(M),45km/h(O)
ALL
Proposal2:EvaluationparametersforRISdeploymentscenarioscanbecategorizedintothree
sections:characteristicsoftransmittersandreceivers,propertiesoftheRIS,andsignalattributes.Theparametervaluesshouldbechosenandanalyzedregardingtheprimaryscenariosthatareimpacted.
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
5
2.RISTypes&Assumption
Asapotential6Gtechnology,RIScanbeusedinwirelesscommunication,informationmodulation,energytransferring,sensing,positioningaswellasimaging.VarioustypesofRISweredevelopedandstudiedinacademiaandindustryincludingrefectionRIS,transmissionRIS,STAR(SimultaneousTransitionandReflectionRIS),absorberRISetc.,whichweremadebasedondifferentelectriccomponentssuchasPIN,varactor,liquidcrystal,CMOSswitchandnon-volatilecomponent.Meanwhile,besidestraditionalpassiveRISwithoutpoweramplifier,theactiveRIS,sensingRISandnon-reciprocalRISareproposedinacademiaaswell.
RefIectionRIS
TransmissionRIS
AbsorberRIS
STARRIS
Figure2-1DemonstrationofRIStypes
ForthestandardizationofRISchannelmodeling,itisnecessarytodownselectthecombinationofdifferentkindsofRISattributestofocusonthemostimportantaspectsintheinitialstageof6Gstandardizationtofacilitatetheprioritizedrequirements.
Inthefollowing,theassumptionsandtheprioritizedattributesofRISareidentifiedbasedontherequirementsofinitialRISdeploymentandtheconsensusinRISTA(RISTechnicalAlliance).
PrioritizetheattributesofRISasshowninTable2-1inRISchannelmodelinginitialstage.
Table2-1PrioritizedCombinationofRISattributes
No
Attributes
Candidates
1stPriority
2ndPriority
1
Type
Reflected,Transmitted,STAR,Absorber
Reflected
Transmitted
2
Mode
Passive,Active,Hybrid,Sensing
Passive
3
Utility
Relay,NewtypeAntenna
Relay
4
PanelShape
Plane,non-plane
Plane
6
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
5
InformationModulation
Non-information-modulationInformation-modulation
Non-
information-modulation
6
Modulation
physical
component
Phase,Amplitude,Both
Phase
7
ModulationGranularity
1-bit,2-bit,…,Continuous
ALL
8
Polarization
Single,Dual
ALL
Assumptions:
LorenzreciprocityofwirelesschannelbasedonthelinearassumptionofRISphysicalmodel.Frequency:from0.5GHzupto100GHz,followthesamerangeasin3GPP.
Bandwidth:nomorethan10%ofthecarrierfrequency.FarfieldassumptionbetweenRISelementandreceiver.
MaxbouncingnumberinRIScascadingscenariofromBStoUE:2
ThereflectedortransmittedEMwavebyRISwillnotbeimpingedtothesameRISanymore.
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
7
3.ChannelModellingMethodology
3.1.GeneralFramework
Figure3-1ComparisonBetweenTraditionalCommunicationModelsandRIS-AssistedCommunicationChannelModels
[2]
ThechannelmodelingframeworkforRIS-assistedcommunicationlinksdiffersfromthetraditionalcommunicationmodelingframework.Asshownin
Figure3-1,
traditionalcommunicationchannelsonlyconsiderthechannelbetweenthetransmitter(BS)andreceiver(UE).Incontrast,RIS-assistedcommunicationchannelmodelingrequiresconsiderationofthreeinterconnectedcomponents:theBS-RISchannel,theRIS-UEchannel,andthephysicalmodeloftheRISitself.
Therefore,comparedtotraditionalcommunicationchannels,thecoreofRISchannelmodelingliesinaccuratelycapturingchannelcharacteristicsinthepropagationenvironmentthroughhigh-precisionyetlow-complexitymodelingmethods,whileenablingchannelsimulationacrossawiderangeoffrequencies,bandwidths,andvariousapplicationscenarios.Toachievethis,RISchannelmodelingmustmeetthefollowingrequirements:
-First,high-precisionlinkmodelingrequiresindependentmodelingoftheBS-RISandRIS-UElinks,whileconsideringtheinterrelationshipbetweenmultiplelinkstoaccuratelyreflectpathlossandscatteringcharacteristicsinthechannel.
-Second,high-precisionphaseshiftmodelingoftheRISneedstoaccountforitsscatteringpattern,idealphaseshifts,andangledependencies,whilealsoincorporatingthenon-idealquantizationeffectspresentinrealenvironments.
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
8
-Moreover,themodelshouldbecapableofsimulatingcomplexscenarios,includingUMi,UMa,InH,andIIoT,allowingflexibleadjustmentsforthelocationsofbasestations,userterminals,andtheRIS.
Toachieveaccuratesimulationatthelinklevel,theRISchannelmodelmusthandlemultipathfading,reflectingchannelfadingcharacteristicsincomplexenvironments.Additionally,physicalsimplificationsandoptimizationsofsystemsimulationsarenecessarytoimprovemodelingefficiency.
Forthepurposesofthepresentdocument,theframeworkofRISchannelmodellingisaddressedwiththeconsiderationsinthefollowingproposals.
Proposal4:theassumptionfortheframeworkofRISchannelmodelingandenhancementof
3GPPTR38.901
[1]:
1)Themethodologyin3GPPTR38.901isasthestartpointofRISchannelmodelling.
Figure3-2RISchannelmodelimplementbasedonthestartpointof3GPPTR38.901
[2].
2)Theper-hopbasicchannelmodelbetweenBS-UE,BS-RIS,RIS-RISorRIS-UEareconstructedbasedontheenhanced3GPPTR38.901channelmodel,wheretheisotropicantennaisassumedforbasicchannelmodel.
3)AphysicalRISpanelwiththepre-definedphase-shiftcodebookforRISelementscanberepresentedbyvirtualRISbasestationsinducedbyimpingingEMwaveswithdifferentdelay,incidentorpolarization.
4)Whatareexpectedtobeenhancedin3GPPTR38.901include:
-HeightdependentPL/LOSprobabilitymodel;
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
9
-Absolutetimeofarrivalmodel.
5)ThefinalchannelmodelbetweenBSandUEarecomprehensiveofdirectpathandcascadedpath:
-Directpath:BS-UEchannel.
-Cascadedpath:BS-RIS-UEchannel.
RIS1RIS2
BS
UE
Figure3-3RISdeploymentscenarioforathree-hopcaselogical.Path4:BS→RIS1→RIS2→UE
ForthescenarioofRISdeploymentwiththree-hopthroughtwoRISpanels,asshownin
Figure
3-3,
therearefournodesincludingBS,RIS1,RIS2andUE.ForthelogicalpathwayfromBStoUE,therearefivecandidatelogicalpaths:
-logicalpath1:BS→UE
-logicalpath2:BS→RIS1→UE
-logicalpath3:BS→RIS2→UE
-logicalpath4:BS→RIS1→RIS2→UE
-logicalpath5:BS→RIS2→RIS1→UE
Notallthelogicalpathwayscontributesignificantlytothefinalchannelresponse,whichimpliesthatsomelogicalpathscanbeomittedbasedontheprincipleoftrade-offbetweencomplexityandaccuracy.
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
10
Thefourthpathof“BS→RIS1→RIS2→UE”isselectedtodemonstratetheprocedureof
constructingthecascadedchannelfromBStoRISsandtoUE.Itcanbeobservedin
Figure3-3
thattherearethreehopsforlogicalpath4fromBStoUEbythereflectionofRIS1andRIS2,respectively.
-Hop1inlogicalpath4:BS-RIS1
-Hop2inlogicalpath4:RIS1-RIS2
-Hop3inlogicalpath4:RIS2-UE
Foreachhop,thetraditionalchannelmodellingmethodologyin3GPPTR38.901canalsoberecognizedbetweentwonodeswithsingleLOSand/ormulti-NLOSrays.
ForeachRIS,theimpingingEMwavewithspecificdelay,polarizationandincidentwillinduceavirtualRISbasestationwithcorrespondingTRPandpolarizedantennapatternifthecodebooksofRISpanelintwopolarizeddirectionsareconfigured.
0
FortheTRPandpolarizedantennapatternofavirtualRISbasestationinducedbyimpingingEMwave,thedetailscanbefoundinRISphysicalmodelsection.
Tx
V
...
1
2
3
BS-UEVV:
BS-UEVH:
\\
/
\\
V11V12V12
RIS2
H1,0,τ1,0
V1
RIS1
H2,1,τ2,1
V11
H3,2,τ3,2
V11VV11h
Rx
V11V
/ //
/V12V
V12VV12h
V2
\V11h
V12h
\
Figure3-4DirectionaltreegraphforthecascadedRISchannelmodel(logicalpath4)
Asshownin
Figure3-4,
eachrownumberedbyinteger0~3representaphysicalentityfromBS,RIS1,RIS2andUE,respectively.Thelinesbetweentworowsrepresenttherayscorrespondingtotwo
physicalnodesbasedon3GPPchannelmodel,withtheattributesofdelay,channelcoefficients,and
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
11
AOA/AOD/ZOA/ZOD.EachlinebeforeRISrow(row1androw2)willinduceavirtualRISbasestationassociatedtoaRISpolarizationdirectionnumberby1and2,respectively.
AcombinedpathfromBStoUEinthedirectionaltreegraphiscomposedofsub-pathsbetweenadjacentrows,subsequently.
ThechannelresponseforacombinedpathbetweenBSandUEisillustratedasthefollowing:
-Channelcoefficients:themultiplicationofthecoefficientsofallsub-paths
-Absolutiondelay:thesumoftheabsolutedelayofallsub-paths
-AOA/ZOA:theAOAandZOAofthefirstsub-path
-AOD/ZOD:theAODandZODofthelastsub-path
Proposal5:DirectionaltreegraphscanbeusedforconstructingthecascadedRISchannelmodelwithmulti-logicalpathways.
3.2.RISPhysicalModel
ThephysicalmodelofaRISisfundamentallybasedondefiningtheradiationpatternofRISarrayelements,alsoknownasRadarCrossSection(RCS).Currently,themainmethodsformodelingRISincludethefollowing:
1)Physicalmodelbasedonequivalentradiationpattern
[2]:
ThismodelrepresentstheRISresponsetosignalsthroughanequivalentradiationpattern.ItfirstderivesthefielddistributionofRISelementsusingphysicaloptics,thenappliestheequivalenceprincipletocalculatethesecondaryradiationoftheelements.TheradiationpatternofeachRISelementisdefinedandcomputed,ultimatelyformingtheoverallradiationpatternoftheRIS.
2)RCSModelBasedonElectromagneticTheory
[3]:
ThismethoduseselectromagnetictheorytoestablishaccurateRCSmodelsunderdifferentpolarizationconditions.ThismodelingapproachaccuratelydescribesthereflectioncharacteristicsofRISelementsincomplexelectromagneticenvironments,providingatheoreticalfoundationforevaluatingtheperformanceofRIS.
3)SimplifiedCosineRadiationPatternModel
[4]:
Thismodelusesasimplifiedantennaradiationpatternassumptionandadoptsthecos!θmodeltodescribethedirectionalcharacteristicsofRISelements.Whilethismethodiscomputationallysimpleandsuitableforscenarioswithlowersystemrequirements,itsaccuracymaybeinferiortothatoftheRCSmodelbasedonelectromagnetictheory.
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
12
3.2.1.RISphysicalmodelbasedonequivalentradiationpattern
Figure3-5TheillustrationofRISequivalentradiationpattern
[2]
UndertheilluminationofaTE-polarizedincidentsignal(Ei,Hi)atanangleof(θin,φin),the
electricandmagneticfieldsonthereflectionsideofthedual-polarizationcoherentRISelementcanbeexpressedas:
.(3-1)
where!risthewavevectorofthereflectedelectromagneticfield.Theelectricandmagneticfieldsonthetransmissionsideofthedual-polarizationcoherentRISelementcanbeexpressedas:
(3-2)
Accordingtotheelectromagneticequivalenceprinciple,thesignalleavingthereflectionsideoftheRISelementcanberegardedasradiatedbythefollowingequivalentelectricandmagneticcurrents:
(3-3)
Selectingareferencepoint!inthe(θ!ut,φ!ut)direction,theequivalentelectricandmagnetic
currents'radiationfieldEsatthispoint!iscalculated.BycomparingEswiththeincidentelectricfieldEi,wegettheequivalentradiationpatternofRISelement:
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
13
whereλisthesignalwavelength,risthedistancefrom!totheRISelement,Eisthe
parallelpolarizationcomponentofEs,andEiisthescalarformofEi.TheoverallradiationpatternoftheRISpanelisthesuperpositionoftheeffectsoftheRISelements:
(3-5)
Proposal6:ThemodulationeffectofRISonsignalscanbecharacterizedusinganequivalentradiationpattern.TheradiationpatternofindividualRISelementscanbederivedandcalculatedusingphysicaloptics,whiletheoverallradiationpatternoftheRISpanelisobtainedbycombiningtheradiationpatternsofitselements.
3.2.2.ElectromagneticRCSmodel
.LocalcoordinatesofRISelement
TherectangularRISelementisassumedinRISchannelmodelling.
ForaRISelement,thelocalcoordinatesisconstructedasshownin
Figure3-6,
wheretheoriginislocatedatthecentreoftheRISelement,thex-axisisparalleltothelengthdirection,they-axisis
paralleltothewidthdirectionandthez-axisisperpendiculartotheplaneoftheRISelement.n
Z
y
ly
VPOI2
O
VPOI1
lx
x
RISeIement
14
Figure3-6ThelocalRISelementcoordinates
ThetwoindependentpolarizationvectorofRISelementarerepresentedbyvpol1andvpol2in
thelocalcoordinatesofRISelement,respectively,asshownin
Figure3-6,
and
pol1,pol2.
v=1v=1
pol1pol2,
vr.v=0
.BasicphysicalmodelofRIS(Reflection)
Undertheassumptionofphysicaloptics,PEC,far-fieldandrectangularpatchofRISelement,thebistaticRCSforeachofindependentpolarizationcomponentsinRISelementcanbederivedas
inEq.(3-6a)and(3-6b),respectively
[3].
(&2HS2)'
whereσpol1andσpol2areRCSofRISelementcorrespondingtotheindependentpolarizationofvpol1andvpol2,respectively;risthedistancefromthecentreofRISelementtothetargetfieldpoint;Hsisthemagneticfieldstrengthatthetargetfieldpoint;Hiisthemagneticfieldstrengthattheincidentpoint;nisthenormalizednormalvectorofRISelement;ks=k.ks0=ksxx0+ksyy0+ksz乙0isthe
scatteringwavevector,ksoisthenormalizedvectorinscatteringdirection;sthewave
numberandλisthewavelengthincarrierfrequency;x0,y0,乙0aretheunitvectorsalongthex,y,andzaxesofthelocalCartesiancoordinatesinRISelement,respectively;ki=k.ki0=kixx0+kiyy0+kiz乙0
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
15
istheincidentwavevector,ki!isthenormalizedvectorinincidentdirection;lxand"yarethelengthandwidthoftheRISelement,respectively.
Whenksx-kix=!,
(3-7a)
Whenksy-kiy=!,
(3-7b)
Hio-pol1andHio-pol2arethenormalizedvectorcomponentscorrespondingtoRISpolarizationvectors,vpol1andvpol2,respectively.
Asshownin
Figure3-7,
basedonPECassumption,theinducedelectriccurrentcorresponding
tovpol1andvpol2,aremainlyinducedbythemagneticfieldinHio-pol1andHio-pol2,respectively,whichoffersaflexiblecontrolforthephase-shiftineachpolarizationofRISelement.
Figure3-7DecompositionoftheincidentmagneticfieldvectoraccordingtotheRISpolarizedcomponents
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
16
(3-8)
LetpLsbethepathlossfromthecentreoftheRISelementtothetargetfieldpoint;!iisthepowerimpingingintotheRISelement;Assumingasimpleinsertionlossmodel,theamplitudeofthereflectionsignalintargetfieldpointcanberepresentedbyAs一pol1andAs一pol2,respectively.
.exp(jφi1).exp(jφpol1).exp(jφs1).Ilosspol1
一pol11'*λ2/(4τ),(si1pol1s1pol(3-9)
=Fs.w.'(Eio一pol1.Ai2)(..exp(jφ).exp(jφ).exp(jφ).,
where,
一pol1=(3-11)
—pol2=(3-12)
whereAi=Ai一pol1+Ai一pol2,Ai=,φi"andφi2arethephaseofincidentEMwaveofthefirstandthesecondpolarizationcomponentinRISelement,respectively;φpol1andφpol2arethephaseshiftofthefirstandthesecondpolarizationcomponentinRISelement,respectively;φs1andφs2arethe
opticaldistancephaseinthedirectionofscatteringcorrespondingtothefirstandthesecond
17
polarizationcomponent,respectively;Ilosspol!andIlosspol2aretheinsertionlossinthefirstandsecondpolarization,respectively.
ThedirectionofAicanbedeterminedbytheoneofEi;.Ai一pol1andAi一pol2canbedeterminedbasedonthedecompositionofAiasfollows:
1)Asshownin
Figure3-6,
thedirectionofHicanbedeterminedbykio×Ei;
2)AccordingtoParallelogramrule,Hicanbedecomposedintothetwocomponent:Hio-pol1andHio-pol2,and,
Hi=w1.Hi0—pol1+w2.Hi0—pol2.(3-13)wherew!andW2aretheweightsofthetwocomponentsofHio-pol1andHio-pol2,respectively,whichcanbecalculatedbysolvingtheoverdeterminedEq(3-13);
3)Definetwonon-orthogonalcomponentsforincidentelectricfield
E=-H
io—pol1io—pol2
,
E=H
io—pol2io—pol1
,
Ai-pol1=w1.Ei0-pol1.Ai
i-pol22i0-pol2i
A=w.E.A
.
,
(3-14)(3-15)(3-16)(3-17)
TocalculatethetotalscatteredfieldoftheRISpanel,wecanfirstcalculatethescatteredfieldcomponentsofeachelementbasedonEq(3-9)andEq(3-10)afterconfiguringthecodebook,andthensumthemup.
ForthelinearpolarizationimpingingEMwavefromanydirection,thepolarizationantenna
patternforRISelementcanbedeterminedbythefollowing:
(3-18)
whereFp"l"∈C3×",Fp"l2∈C3×1arethenormalizedpolarizationantennapatterncorrespondingtothefirstandthesecondpolarizationcomponentsinRISelement,respectively,and,
18
ReconfigurableIntelligentSurfaceTechnologyWhitePaper:AChannelModellingPerspective
(3-19)
(3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術(shù)展覽設(shè)計(jì)師的空間布局與藝術(shù)呈現(xiàn)
- 年產(chǎn)100萬(wàn)套轉(zhuǎn)椅配件及15萬(wàn)套成品生產(chǎn)線(xiàn)項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)拿地
- 2025年全球及中國(guó)自鎖平頭螺母行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球自由式風(fēng)帆板行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球鈣鈦礦太陽(yáng)光模擬器行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球生命科學(xué)服務(wù)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球無(wú)人機(jī)測(cè)繪系統(tǒng)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)碳捕獲與利用技術(shù)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球汽車(chē)空調(diào)電機(jī)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)家用前置過(guò)濾器行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 二零二五版電力設(shè)施維修保養(yǎng)合同協(xié)議3篇
- 最經(jīng)典凈水廠(chǎng)施工組織設(shè)計(jì)
- VDA6.3過(guò)程審核報(bào)告
- 2024-2030年中國(guó)并購(gòu)基金行業(yè)發(fā)展前景預(yù)測(cè)及投資策略研究報(bào)告
- 2024年湖南商務(wù)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)帶答案
- 骨科手術(shù)中常被忽略的操作課件
- 《湖南師范大學(xué)》課件
- 2024年全國(guó)各地中考試題分類(lèi)匯編:作文題目
- 2024年高壓電工操作證考試復(fù)習(xí)題庫(kù)及答案(共三套)
- 《糖拌西紅柿 》 教案()
- 彈性力學(xué)數(shù)值方法:解析法:彈性力學(xué)中的變分原理
評(píng)論
0/150
提交評(píng)論