江西師范大學(xué)《機(jī)器學(xué)習(xí)案例分析1》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江西師范大學(xué)《機(jī)器學(xué)習(xí)案例分析1》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江西師范大學(xué)《機(jī)器學(xué)習(xí)案例分析1》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
江西師范大學(xué)《機(jī)器學(xué)習(xí)案例分析1》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
江西師范大學(xué)《機(jī)器學(xué)習(xí)案例分析1》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁江西師范大學(xué)《機(jī)器學(xué)習(xí)案例分析1》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的研究中,模型的可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于預(yù)測股票價(jià)格的人工智能模型,但用戶對(duì)模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量2、在人工智能的自然語言生成任務(wù)中,如何生成連貫、有邏輯的文本是一個(gè)挑戰(zhàn)。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)撰寫新聞報(bào)道的系統(tǒng),需要考慮文章的結(jié)構(gòu)、語法和語義的一致性。以下哪種方法或技術(shù)在提高文本生成質(zhì)量方面最為關(guān)鍵?()A.預(yù)訓(xùn)練語言模型B.強(qiáng)化學(xué)習(xí)中的獎(jiǎng)勵(lì)機(jī)制C.語法規(guī)則約束D.以上方法結(jié)合使用3、在人工智能的圖像識(shí)別任務(wù)中,對(duì)抗樣本的存在對(duì)模型的安全性構(gòu)成威脅。假設(shè)一個(gè)圖像識(shí)別模型容易受到對(duì)抗樣本的攻擊,導(dǎo)致錯(cuò)誤的分類結(jié)果。以下哪種方法在提高模型對(duì)對(duì)抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對(duì)抗訓(xùn)練D.以上方法綜合運(yùn)用4、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型的協(xié)同訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)擁有各自的私有數(shù)據(jù),需要共同訓(xùn)練一個(gè)模型。以下哪種聯(lián)邦學(xué)習(xí)算法或框架在處理數(shù)據(jù)異構(gòu)和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學(xué)習(xí)B.縱向聯(lián)邦學(xué)習(xí)C.聯(lián)邦遷移學(xué)習(xí)D.以上框架根據(jù)具體情況選擇5、在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)是重要的分支之一。假設(shè)一個(gè)醫(yī)療診斷系統(tǒng)需要通過大量的病例數(shù)據(jù)來預(yù)測疾病,以下關(guān)于機(jī)器學(xué)習(xí)在該場景中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進(jìn)行疾病預(yù)測B.無監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強(qiáng)化學(xué)習(xí)可以通過與環(huán)境的交互和獎(jiǎng)勵(lì)機(jī)制,優(yōu)化診斷策略D.機(jī)器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗(yàn)和判斷,不需要人工干預(yù)6、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動(dòng)作。假設(shè)一個(gè)智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項(xiàng)是錯(cuò)誤的?()A.智能代理可以通過學(xué)習(xí)和經(jīng)驗(yàn)積累來改進(jìn)自己的策略B.它能夠根據(jù)環(huán)境的變化實(shí)時(shí)調(diào)整自己的行為,以達(dá)到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個(gè)智能代理之間可以通過協(xié)作或競爭來實(shí)現(xiàn)更復(fù)雜的任務(wù)7、當(dāng)利用人工智能進(jìn)行音樂創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價(jià)值的音樂作品,以下哪種方法和技術(shù)可能會(huì)被運(yùn)用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是8、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢是?()A.對(duì)姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性9、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是10、在人工智能的異常檢測任務(wù)中,例如檢測網(wǎng)絡(luò)中的異常流量或金融交易中的欺詐行為。假設(shè)正常數(shù)據(jù)的模式較為復(fù)雜,而異常數(shù)據(jù)相對(duì)較少且具有多樣性。以下哪種方法在這種情況下更適合進(jìn)行異常檢測?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.無監(jiān)督學(xué)習(xí)方法,自動(dòng)發(fā)現(xiàn)異常模式C.監(jiān)督學(xué)習(xí)方法,使用有標(biāo)注的異常數(shù)據(jù)進(jìn)行訓(xùn)練D.人工檢查所有數(shù)據(jù),識(shí)別異常11、在人工智能的可解釋性研究中,對(duì)于一個(gè)復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對(duì)輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋,描述模型的推理過程D.以上都是12、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報(bào)道,以下關(guān)于文本生成的說法,哪一項(xiàng)是正確的?()A.可以完全依靠隨機(jī)生成來創(chuàng)造新穎的內(nèi)容B.語言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語法和語義的約束13、深度學(xué)習(xí)模型在圖像識(shí)別、語音識(shí)別等領(lǐng)域取得了巨大的成功,但也面臨著過擬合、計(jì)算資源需求大等挑戰(zhàn)。假設(shè)要訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來識(shí)別各種動(dòng)物的圖像,然而數(shù)據(jù)量有限,為了避免過擬合同時(shí)提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓(xùn)練輪數(shù)C.使用數(shù)據(jù)增強(qiáng)技術(shù)D.降低學(xué)習(xí)率14、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)生成新聞報(bào)道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報(bào)道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報(bào)道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本15、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。以下關(guān)于人工智能智能客服的說法,不正確的是()A.能夠快速回答常見問題,提高客戶服務(wù)的響應(yīng)速度B.可以通過自然語言交互理解客戶的需求和意圖C.智能客服能夠完全替代人工客服,提供同樣優(yōu)質(zhì)和全面的服務(wù)D.仍需要不斷改進(jìn)和優(yōu)化,以提高回答的準(zhǔn)確性和滿意度二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡述循環(huán)神經(jīng)網(wǎng)絡(luò)在處理序列數(shù)據(jù)中的應(yīng)用。2、(本題5分)談?wù)勅斯ぶ悄茉谟螒蜷_發(fā)中的應(yīng)用。3、(本題5分)解釋遺傳算法的原理和應(yīng)用。4、(本題5分)簡述人工智能在生產(chǎn)計(jì)劃和調(diào)度中的優(yōu)化。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用自然語言處理技術(shù),對(duì)一段文本進(jìn)行情感分析,判斷其是積極、消極還是中性。使用深度學(xué)習(xí)模型或傳統(tǒng)的機(jī)器學(xué)習(xí)方法,評(píng)估分析結(jié)果的準(zhǔn)確性。2、(本題5分)運(yùn)用Python的PyTorch框架,搭建一個(gè)基于注意力機(jī)制的圖像分類模型,能夠處理多標(biāo)簽圖像分類任務(wù)。3、(本題5分)利用Python的Scikit-learn庫,實(shí)現(xiàn)一個(gè)決策樹算法對(duì)乳腺癌數(shù)據(jù)集進(jìn)行分類。詳細(xì)展示數(shù)據(jù)預(yù)處理、特征選擇、模型訓(xùn)練和預(yù)測的過程,并分析模型的性能和決策路徑。4、(本題5分)利用Python的Keras庫,構(gòu)建一個(gè)基于強(qiáng)化學(xué)習(xí)的機(jī)器人路徑規(guī)劃模型,在復(fù)雜環(huán)境中找到最優(yōu)路徑。5、(本題5分)使用Python的PyTorch框架,搭建一個(gè)基于Transformer架構(gòu)的情感分析模型,能夠處理多語言文本的情感分析。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)剖析某

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論