




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
ASEANGuideon
DataAnonymisation
Contents
EXECUTIVESUMMARY 1
1)INTRODUCTION 4
2)TERMINOLOGYANDKEYCONCEPTS 8
3)THEANONYMISATIONPROCESS 15
ANNEXA:BasicDataAnonymisationTechniques 28
ANNEXB:AnOverviewonK-anonymity,L-diversityandT-closeness 44
ANNEXC:CommonMisunderstandingsinAnonymisation 48
ANNEXD:AnonymisationTools 50
1
EXECUTIVESUMMARY
TheASEANGuideonDataAnonymisation(this“Guide”)isatechnicalandapplication-orientedintroductoryguidetoanonymisationofpersonaldata.
Part1:Introduction
Part1ofthisGuideintroducestheGuide’spurposeandscope.Specifically,thepurposeofthisGuideistoprovideinformationandguidanceonbasicdataanonymisationthatmaybereferencedbypolicymakers,regulatorsaswellasindustryorganisationswithincountrieswhoaremembersoftheAssociationofSoutheastAsianNations(“ASEAN”).Asmemberstatesareincreasinglyadoptingdataprotectionlaws,thisGuidemaybeparticularlyusefulasabaselineforadaptationtotheirspecificjurisdictionalcontexts.Tothisend,itsetsoutageneralintroductiontotheanonymisationprocessandsomecommonanonymisationtechniques.
Dataanonymisationisarisk-basedprocessofconvertingpersonaldataintodatathatcannolongerbeusedtoidentifyanindividual,eitheraloneorincombinationwithotherinformation,byapplyingrelevanttechniquesandincombinationwithgovernancemeasures.Whetherasetofdatacanbeconsiderednolongerabletoidentifyanindividualwoulddependonthelevelofre-identificationrisksandtheapplicabledataprotectionlaws.WhiledataanonymisationisnotnecessarilyaspecificlegalrequirementundermanydataprotectionlawsinASEAN,practisingdataanonymisationcanassistintheprotectionofpersonaldata,facilitatecompliancewithapplicabledataprotectionlawsandprovideadditionalbenefits(e.g.,safesharingandcollaborationusingdatafromindividuals).
Part2:KeyConceptsandTerminology
Part2ofthisGuidediscusseskeyconceptsandterminologyatanintroductorylevel,whichcanserveasausefulreferenceandpromoteharmonisationindataanonymisationpracticesacrossASEANjurisdictions.Forexample,itsetsoutthedefinitionofadataattributeandhowitmaybecategorisedasadirectidentifier,indirectidentifier,ortargetattributebeforetheanonymisationprocess.Similarly,itexplainsidentifiabilityandrelatedconcepts,whichfacilitateseffectivecategorisationofdataattributes,applicationofanonymisationtechniquesandriskassessments.Italsodescribestypicalscenarios(alsoknownasusecases)foranonymisationsuchasinternalandexternaldatasharing,toillustratetheoutcomesofanonymisation.
TheannexestothisGuideprovideamoredetailedandtechnicalexplanationofvariousconceptsasfollows:
?AnnexA:BasicDataAnonymisationTechniques
?AnnexB:AnOverviewonK-Anonymity
?AnnexC:CommonMisunderstandingsinAnonymisation
?AnnexD:AnonymisationTools
Part3:TheAnonymisationProcess
Part3ofthisGuideprovidesanoverviewofthenatureofanonymisationtechniquesingeneral,brieflysummarisesgoodpracticesfordocumentation,andsetsoutkeyanonymisationstepsthatcanbeadoptedaspartoftheanonymisationprocess.Thenecessityoftailoringthesestepstosuitspecificrequirements,and/orrepeatingstepstobetterachieveanonymisation,dependsonfactorssuchastheusecaseandcomplexityofthedata.
AnonymisationSteps
TheanonymisationstepsinthisGuidearesummarisedinthefollowing
diagram1:
Foravoidanceofdoubt,thesteps‘Applyanonymisationtechniques’and‘Computeyourrisk’(steps3and4above)canbeaniterativeprocess(hencerepresentedinaloop).
STEP1
Step1(knowyourdata)involvesunderstandingthesuitabilityofdataforanonymisation,andtheappropriatenessofanonymisationfortheintendedusecase.Therearevarious
1DiagramreproducedwithpermissionfromtheSingaporePersonalDataProtectionCommission’sGuidetoBasicAnonymisation.
2
3
factorstoconsider,suchasthenatureofuseandextentofdisclosure.Dataminimisationshouldbepractisedtoexcludeanydataattributeswhicharenotneededfortheusecase,andtolimitthedatatoasampleofrecordsratherthanthefulldataset(wherepossible).
STEP2
Step2(de-identifyyourdata)involvestheremovalofdirectidentifiersfromthedataand,optionally,usingreversiblepseudonymisationwherethereisneedtobeabletolinkeachrecordinthe(anonymised)datasetbacktoauniqueindividualand/orbacktotheoriginaldatabase.
STEP3
Step3(applyanonymisationtechniques)involvestheapplicationofanonymisationtechniquestoindirectidentifiersinthede-identifieddataset,sothattheycannotbeeasilycombinedwithotherdatasetsthatmaycontainadditionalinformationtore-identifyindividuals.
STEP4
Step4(computeyourrisks)involvesanestablishedriskthresholdforanonymisationandtheapplicationofprocedurestodeterminewhetherasufficientanonymisationlevelhasbeenachieved.Iftheriskthresholdhasnotbeenmet,Step3(applyanonymisationtechniques)shouldberepeated.Afinalriskassessmentshouldbeconductedandresidualriskswillneedtobereviewed,asthiswouldaffecttheadditionalriskmanagementmeasures/controlsthatneedtobeappliedinStep5below.Thisisespeciallyimportantincaseswherethefinalanonymisationlevelisinsufficienttosatisfythelegalthreshold(i.e.relevantdataprotectionrequirements).
STEP5
Step5(manageyourrisks)involvestheimpositionofcontrols/measuresinrelationtotheanonymiseddata,tofurtherreducetherisksofre-identificationofthedata.Suchmeasuresareusuallycontractual,administrativeand/ortechnicalinnature.
1)INTRODUCTION
5
PART1:INTRODUCTION
PurposeofthisGuide
ThepurposeofthisGuideistoprovideinformationandguidanceonbasicdataanonymisationconceptsandtechniques.ItisaimedprimarilyatgovernmentsandindustryorganisationsthatprocesspersonaldataandarelocatedincountrieswhoaremembersofASEAN,andthoseworkingwithinsuchorganisations.Itwillalsobenefitthoseworkinginfieldsofriskassessmentandcompliancewhomayneedtoappreciateandunderstandthecapabilitiesandlimitationsofanonymisationtechniquesinthecontextoftheirspecificdomain.
Dataanonymisationmaynotnecessarilybeaspecificrequirementundervariouscountries’dataprotectionlaws.However,anonymiseddataisgenerallynotconsideredpersonaldataandthus,notsubjecttodataprotectionlaws.Besidesthat,anonymisingpersonaldatawouldalsoenableorganisationstoenjoythepracticalbenefitssummarisedatparagraph1.2.below.
Anonymisationisarisk-basedprocessofconvertingpersonaldataintodatathatcannolongerbeusedtoidentifyanindividual,eitheraloneorincombinationwithotherinformation,byapplyingrelevanttechniquesandincombinationwithgovernancemeasures.Whetherasetofdatacanbeconsiderednolongerabletoidentifyanindividualwoulddependonthelevelofre-identificationrisksandtheapplicabledataprotectionlaws.Thespecifictypeandnumberofanonymisationtechniquesaswellasgovernancecontrolstoapplytoachieveanonymisationwilldependonthesensitivityofthedataitself,theintendedusecasefortheanonymiseddata,andtheassessedrisksandpotentialattacksregardingsuchdata.
Aproperriskassessmenthelpstodeterminetheamountofresourcesthatoughttobeinvestedfordataanonymisationtostriketheappropriatebalancebetweentheutility/usefulnessandanonymityofthedata.Inshort,anonymisationisarisk-basedprocesswhichrequiresunderstandingtherequirementsoftheintendedusecaseandassessingtherisksinvolved.
BenefitsofAnonymisation
Engaginginanonymisationofpersonaldatahasseveralkeybenefits.Theseinclude:(a)Buildingtrustinorganisations’dataprotectionpractices;
(b)Enablingthesafeuseofdatawhilepreservingthedata’sutilityandindividuals’privacyduringanalysisandresearch,whichmaybecarriedoutwithpartnersthroughthesharingofanonymiseddata;
6
(c)Promotingdatasharingandcollaborationasanonymiseddatacanbesharedwiththirdpartiesandacrossjurisdictionssafelyandwithoutinfringingindividuals’privacy;
(d)Demonstratinggoodgovernanceoverdataandincreasingconsumers’confidencethattheirpersonaldataisprotectedwhendataissharedamongstbusinessesandacrossborders;
(e)Enhancingindividuals’privacyandsafeguardsagainstdatamisuseandexploitation,especiallywhenusedincombinationwithgovernancemeasures/controlstominimiseunauthorisedaccesstodata;and
(f)reducingtheimpactorharmtoindividualsintheeventofadatabreach,includingidentitytheft.
ScopeofthisGuide
ThisGuideprovidesageneralintroductiontotheanonymisationprocessandsomecommonanonymisationtechnique
s2.
Theseanonymisationtechniquesaresuitablefordatawhereeachrecordwithinthedatapertainstoandrepresentsasingleindividual.Additionally,theanonymisationprocesssetoutinthisGuideassumesthatthedatawhichanonymisationtechniquesareappliedtoarecompleteandaccurateorhavebeenpre-processedsothattheyaresufficientlycompleteandaccurateforanonymisation.Aspre-processingdata,sometimesreferredtoasdatacleansing,isamajortopiconitsown,itisoutsidethescopeofthisGuide.
ThisGuidefocusesontabularandsimilarlystructureddata,whichistypicallystoredinExcelsheets,SQLdatabases,JSONformat,CSVformat,etc.,asthesearethemostcommonlyusedformattostoreandprocessdatasets.
DataProtectionLandscapeinASEAN
AcrossASEAN,memberstatesareincreasinglyadoptingdataprotectionlaws.Atpresent,Singapore,Malaysia,Thailand,thePhilippines,IndonesiaandVietnamhaveanexistingoverarchingdataprotection
law3.
Inaddition,asofDecember2024,Brunei
2Forfurtherinformationandresources,pleaserefertointernationalstandardssuchasISO/IEC20889:2018onprivacyenhancingdatade-identificationterminologyandclassificationoftechniquesandISO/IEC27559:2022oninformationsecurity,cybersecurityandprivacyprotection-privacyenhancingdatade-identificationframework.
3SeeSingapore’sPersonalDataProtectionAct2012;Malaysia’sPersonalDataProtectionAct2010;Thailand’sPersonalDataProtectionActB.E.2562(2019);thePhilippines’RepublicActNo.10173–DataPrivacyActof2012;Indonesia’sLawNo.27of2022onPersonalDataProtection;andVietnam’sDecreeNo.13/2023/ND-CPontheProtectionofPersonalData.
DarussalamandCambodiaareintheprocessofenactingtheirowndataprotectionlaw
s4.
BasedonasurveyconductedacrosstheASEANmemberstates,abouthalfoftheASEANmemberstateshavelaws,regulations,guideline
s5,
orstandardsrelatingtodataanonymisationandacorrespondingnumberofASEANmemberstateshaveobservedthatitiscommon(andpracticable)forprivateorgovernmentorganisationstoperformdataanonymisationintheirjurisdictions.Whiletherewereindicationsthatsimpleranonymisationtechniquessuchascharactermaskingandde-identificationwereprimarilyadopted,moresophisticatedanonymisationtechniqueswerealsosometimesutilised.
ImportantNote:ThisGuideisprimarilya‘technicalandapplication-oriented’introductiontothecommonconceptsaroundanonymisationinthecontextofpersonaldataprotectionlaws.DataprotectionlawsvaryacrosstheASEANmemberstates,andthelegaldefinitionandtreatmentof‘a(chǎn)nonymiseddata’andotherconceptsintroducedinthisGuidemayalsodifferacrossjurisdictions.Nevertheless,thisGuideaimstosetoutarisk-basedapproachtoanonymisationthatcanserveasausefulreferenceacrossASEAN(whichcanthenbeadaptedforeachjurisdiction’sspecificrequirements).
4See,forinstance,BruneiDarussalam’sAuthorityforInfo-communicationsTechnologyIndustry’swebsite(accessibleat:
.bn/regulatory/pdp/
),andtheMinistryofPostandTelecommunicationofCambodia’spublicannouncementdated4November2022(accessibleat:
/announcements/press-release-on-the-
progress-of-digital-policies-and-regulations-in-the-digital-sector-in-cambodia/).
5SeeSingapore’sPersonalDataProtectionCommission’sGuidetoBasicAnonymisation,accessibleat:
.sg/help-and-resources/2018/01/basic-anonymisation
.
7
2)TERMINOLOGYANDKEYCONCEPTS
PART2:TERMINOLOGYANDKEYCONCEPTS
2.1KeyTerms
Theconceptofanonymisationisfairlynewtomanyorganisations.Hence,variouskeytermssometimesbearadifferentmeaningwhenusedbyorganisations,ascomparedtotheirspecificmeaningunderdifferentdataprotectionlaws.ForthepurposesofthisGuide,thefollowingtableprovidesthedefinitionsofkeytermsusedinthisGuid
e6:
Term
Definition/ExplanationofConcept
Personaldata
Generally,thisreferstodataaboutanindividualwhocanbeidentifiedfromthatdataaloneorincombinationwithotherinformationtowhichanorganisationhasorislikelytohaveaccessto.
Non-personaldata
Thisreferstodatathatdoesnotrelatetoanindividual.
De-identifieddata
Thisgenerallyreferstodatafromwhichdirectidentifiers(seebelowforthedefinitionof“directidentifiers”)havebeencompletelyremoved,voided(setto“null”)oroverwritten.
Dataattribute
Thisreferstofeatures/characteristicsofadataset,e.g.,customernames,productspurchasedandsoon.Hence,dataattributesaretheinputsinananonymisationprocess.
Anonymisation
Thisreferstoarisk-basedprocessofconvertingpersonaldataintodatathatcannolongerbeusedtoidentifyanindividual,eitheraloneorincombinationwithotherinformation,byapplyingrelevanttechniquesandincombinationwithgovernancemeasures.
Whetherasetofdatacanbeconsiderednolongerabletoidentifyanindividualwoulddependonthelevelofre-identificationrisksandtheapplicabledataprotectionlaws(seealsodefinitionof“anonymiseddata”below).
6NotethatthesearenotlegaldefinitionsandareintendedonlytoprovideguidanceonthetermsusedinthisGuide.Thetermsinthetablemayhavevariationsintheirspecificlegaldefinitionsacrossdifferentjurisdictions.
9
Term
Definition/ExplanationofConcept
Anonymiseddata
Thisreferstodatatowhichanonymisationtechniqueshavebeenapplied(ifnecessary,incombinationwithgovernancemeasures)toachievealowlevelofre-identificationrisk,soastomeetaparticularlegaland/orindustry-accepted(e.g.,risk-based)standard.
Generally,anonymiseddataisnotconsideredpersonaldataunderajurisdiction’sdataprotectionlaws.Whetherornotdataissufficientlyanonymisedwoulddependontheapplicablelaws.Hence,organisationsshouldrefertotheregulatoryguidanceonanonymisationstandardsintheirrespectivejurisdictions(ifany),toensurecompliancewithrelevantdataprotectionlegalrequirements.
2.2IdentifiersandTargetAttributes
Itisimportanttounderstandhowdataattributes,whichareinputsfortheanonymisationprocess,arecategorisedbeforeanonymisationisperformed.Thisfacilitatesaproperexecutionofriskassessmentsandachievementofdesiredoutcomes.Dataattributesareusuallycategorisedasfollows:
(a)Directidentifier:Adirectidentifier(alsoreferredtoas“uniqueidentifier
”7)
isusuallyseenasa‘highrisk’attribute.Thesearedataattributesthatareuniquetoanindividualandcanbeusedtoidentifytheindividual.Becauseapersonmaybeidentifiablefromasingledirectidentifier,alldirectidentifiersneedtoberemovedaspartoftheanonymisationprocess.
(b)Indirectidentifier:Anindirectidentifier(alsoreferredtoas“quasi-identifier”)isusuallyseenasa‘mediumrisk’attribute.Thesearedataattributesthatarenotuniquetoanindividualbutcanpotentiallyidentifyanindividualwhencombinedwithotherindirectidentifiers.Manydataanonymisationtechniquesprimarilyfocusonthetreatmentofindirectidentifiersinordertoachieveasufficientlevelofanonymisation.
(c)Targetattribute:Atargetattributeoftencontainsthemainutilityofthedataset(i.e.,theyarepiecesofusefulinformationassociatedwiththeindividual).Itisusuallyseenasa‘lowrisk’attributeintermsofitspotentialtore-identifytherelevantindividualasitisusuallyinformationthatisnotpubliclyoreasily
7Notethatalthoughthesetermsaresometimesusedinterchangeably,auniqueidentifierisnotalwaysadirectidentifierbecausesometimesapseudonym,recordidentifierorforeignkeycanbeuniquebutnotidentifying.
10
11
accessibletoothers.Nevertheless,suchattributesmaybesensitiveandmayresultinhighpotentialforadverseeffecttotheindividualifdisclosed.
Theappropriatecategorisationforanygivendataattributedependsonthebroadercontextinwhichthedataattributeislocated.Forexample,dataattributesthatwouldordinarilybeindirectidentifiersinlargerdatasetscouldbecomedirectidentifiersinsmallerdatasets(e.g.,informationaboutasmallgroupofpeople,eachpersonbeingofadifferentage).Hence,thecategorisationofdataattributesisnotalwaysatrivialprocessandoftenrequiressomedeliberation.
Someexamplesforatypicalcategorisationofdataattributesarelistedbelow.Foravoidanceofdoubt,thesearenotintendedtoserveasalegaldefinitionorclassificationunderanyofthelawsoftheASEANmemberstates.
DirectIdentifiers
IndirectIdentifiers
TargetAttributes
??
???
?
??
?
AccountnumberBirthcertificate
number
EmailaddressFullName
Mobilephonenumber
National
identificationnumberPassportnumber
Socialmediausername
Biometricdata
??????????
???
Address
Postalcode/PostcodeAge
DateofbirthSex/GenderMaritalstatus
Race
CompanynameJobtitle
Vehiclelicenseplatenumber/vehicleregistrationnumberInternetProtocoladdress
Weight/Height
Geolocation
?
??????
Financial
transactions
RetailpurchasesSalary
Creditrating
InsurancepolicyMedicaldiagnosisVaccinationstatus
2.3Identification,De-identificationandRe-identification
Toproperlyplaceattributesoridentifiersofagivendatasetintooneofthethreecategoriesabove,itisimportanttounderstandtheprocessof“identification”,“de-identification”and“re-identification”,aswellaswhatitmeansforanindividualtobe“identifiable”fromadataset.Thesetermscanbeunderstoodasfollows:
(a)Identifying,Identifiable:Asanaction,“identifying”and“identification”referstoaprocessofestablishingoneormoreindividuals’identityfromthedata.Whenevaluatingadataset,“identifyingcharacteristics”referstotheinformationcontentcontainedinthedatasetwhichissufficienttoestablishtheidentityofoneormoreindividuals.Hence,anindividualis“identifiable”fromdataifitcontainsidentifyingcharacteristicspertainingtotheindividual.
12
(b)De-identification:De-identificationusuallyreferstoacompleteremoval,voiding(settingto“null”)oroverwritingofdirectidentifiersinthedataset.Thisdoesnotnecessarilyresultincompleteanonymisationofthedata–individualsmaybeidentifiedfromindirectidentifierswhencombinedwithotherinformation.
(c)Re-identification:Thistermiscommonlyusedtorefertotheidentificationofanindividualfromadatasetthatwaspreviouslyde-identifiedoranonymised.Itcansometimesinvolvethereversalofpreviousstepstakentoperformde-identificationoranonymisation,orthecombinationofvariousdatasetstoobtainidentifyingcharacteristics(asdescribedabove).
Ageneralapproachtodeterminetherespectiveattributetype(e.g.,directidentifier,indirectidentifier,andtargetattribute)intheabsenceofaspecificlistfromtherelevantdataprotectionauthority(“DPA”)canbegleanedfromthechartbelow.Organisationsmaywishtoconsiderestablishingandfollowingasimilarapproachtosortdataattributesintotheirrespectiveattributetypes.
2.4TypicalScenariosforAnonymisation
Anonymisationtypicallyinvolvesremovalofdirectidentifiersandmodificationofindirectidentifiers.Targetattributesareusuallyleftunchanged,exceptwherethepurposeistocreatefictitiousdata.
Toillustratetheoutcomesofanonymisation,thefollowingexamplesofusecasesdescribecommonscenarios(i.e.,usecases)andsetoutcommonconsiderationsduringanonymisationwhendealingwiththesamedatafordifferentpurposes.Guidelinesfortheprocessbywhichdatacanbeanonymised(afterdeterminingtherelevantusecase)aredescribedbelowatPart3:TheAnonymisationProcess.
13
Itshouldbenotedthattheexamplesbelowareforillustrationonly.Whencarryingouttheirownanonymisationexercises,organisationswillneedtoassesstheappropriatebalancebetweenthedatautilityanddepthofanonymisation(intermsofthetechniquesandcontrolsapplied)requiredforeachoftheirspecificusecases,takingintoaccounttheamountandtypesofdatainvolved,specificrisksandpotentialattackswithintheusecases,andtheapplicablelawsineachASEANmemberstate.
Internaldatasharing(lowrisk)
Example
De-identifiedcustomerdatasharedbetweentheresearch&developmentdepartmentandtheproductsdepartmentforanalysisandin-housedevelopmentofnewgoodsandservices.
Description
Onlydirectidentifiers(e.g.,namesandcustomerIDs)areremovedfromthedatasetwhileindirectidentifiers(e.g.,age,gender,address)
andtargetattributesareleftunalteredtosupporttheintendedusecase.
Thede-identifieddataisstillpersonaldataasindividualsarelikelytobere-identifiablefromtheotherattributesinthedata.Hence,eventhoughthedataisonlysharedwithintheorganisation,itisstilladvisableinsuchcasestopracticedataminimisation(i.e.,removinganyindirectidentifiersand/ortargetattributeswhicharenotneededfortheusecase).Thiswillprovideanadditionallayerofprotectiontothede-identifieddata.
Internaldatasharing(highrisk)
Example
Anonymiseddataonthespendinghabitsanddemographicsofhighnet-worthcustomerssharedwithin-houseloyaltyteamstocreatedifferentiatedcustomervaluepropositions.
Description
Anonymiseddata(usingtheappropriateanonymisationtechnique(s)totreatbothdirectandindirectidentifiers)shouldbesharedinsteadofonlyde-identifieddataincaseswhere:
?theinternaldatasharingdoesnotrequiredetailedpersonaldata(e.g.,fortrendanalysis);and/or
?thedatainvolvedismoresensitiveand/orgranularinnature(e.g.,financialinformation).
14
Externaldatasharing
Example
Anonymisedcustomerdatasharedbetweenanin-housemarketingteamandexternalmarketingpartnerforanalysisofcustomerprofilesanddevelopmentofmarketingcampaigns.
Description
Insuchcases,thedatasetsaresharedwithanauthorisedexternalpartyforbusinesscollaborationpurposes.Hence,appropriateanonymisationtechniquescanbeappliedtothedatasetstohelporganisationsbettercomplywithdataprotectionrequirements.
Long-term/archivaldataretention
Example
Retentionofanonymiseddata(wherethelegallypermissibleretentionperiodinrelationtothepersonaldatahaspassed)forthepurposeofdataanalysisandhistoricalanalysisofcustomertrends.
Description
Anonymisationtechniquescanbeusedtoconvertpersonaldatatonon-personaldata.Thisallowstheorganisationstolegallyretaintheresultantdataasusefulbusinessrecordsforlong-termdataanalysiswhenthereisaretentionlimitationobligationapplicabletotheoriginalpersonaldata.
Takenotethatthisusecaseisdifferentfromtheothersas:
a)Sincesuchdataistoberetainedbeyondthelegallypermissibleperiodforretentionofpersonaldata,nocopies(whetheroriginalorotherwise)ofthedata,orsub-setsofthedata,shouldcontainpersonaldata.
b)Incontrast,theotherusecasestypicallyinvolveorganisationsretainingboththeanonymisedandoriginalpersonaldata(assumingthatthelegallypermissibleretentionperiodforthepersonaldatahasnotbeenexceeded).
c)Theorganisationshouldensurethattheanonymiseddatawillnotbere-identifiable,asthisusecasedemandsstronger(andirreversible)anonymisationtechniquestobeappliedinthecontextwherethelegallypermissibleretentionperiodhaspassed.Ifthedataisanonymised,buttheorganisationhastheabilitytoreversetheanonymisation,thiswouldpotentiallyresultinnon-compliancewiththeretentionlimitationobligation.
3)THEANONYMISATIONPROCESS
16
PART3:THEANONYMISATIONPROCESS
3.1OverviewofAnonymisationTechniques
TheanonymisationprocessdescribedinthisGuideconsistsofseveralkeysteps.Beforeconsideringthestepsindetail,itwillbehelpfultofirsthaveageneralunderstandingofthenatureofanonymisationtechniques.
AnonymisationtechniquesareappliedatStep3oftheanonymisationprocess(describedbelow).Theyconsistofvariousmethodstoremoveidentifyingcharacteristicsfrompersonaldata.Differentanonymisationtechniqueshavedifferentcharacteristicsandmodifythedataindifferentways(seeAnnexAforfurtherdetailsoncommonanonymisationtechniques).Moreover,severalanonymisationtechniquescanbeusedincombinationonasingledataattribute.
Theappropriatenessofatechniquedependsonthecategorisationandthecharacteristicsofthedatainquestion.Forinstance,certaintechniques(e.g.,charactermasking)canbemoreappropriatefordirectidentifiers.Ontheotherhand,techniquessuchasaggregationcanbebettersuitedforindirectidentifiers.Anothercharacteristictocons
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 11 ao ou iu 教學(xué)設(shè)計-2024-2025學(xué)年一年級語文上冊統(tǒng)編版
- 2025年華東政法大學(xué)單招職業(yè)傾向性測試題庫匯編
- 2025年X射線像增強器用微通道板項目建議書
- 第二單元第四課群文閱讀 教學(xué)設(shè)計 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 2024四川內(nèi)江路橋集團有限公司公開招聘工作人員5人筆試參考題庫附帶答案詳解
- 第11課《岳陽樓記》教學(xué)設(shè)計- 2024-2025學(xué)年統(tǒng)編版語文九年級上冊
- 2024臨沂市蘭山區(qū)財金投資集團有限公司權(quán)屬子公司招聘(14人)筆試參考題庫附帶答案詳解
- 第5課 第二次工業(yè)革命 教學(xué)設(shè)計-2023-2024學(xué)年浙江省部編版歷史與社會九年級下冊
- 《二、填寫制作體會》教學(xué)設(shè)計教學(xué)反思-2023-2024學(xué)年初中信息技術(shù)人教版七年級上冊
- 機器學(xué)習(xí)原理與應(yīng)用電子教案 5.10.5深度學(xué)習(xí)實踐-孿生神經(jīng)網(wǎng)絡(luò)
- 企業(yè)承包經(jīng)營合同范本
- 2025年01月公安部第三研究所公開招聘人民警察筆試筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 光纜線路施工安全協(xié)議書范本
- 《我國國有企業(yè)股權(quán)融資效率實證研究》相關(guān)概念及國內(nèi)外文獻綜述2600字
- 教師讀書分享《給教師的建議》課件
- 人民警察紀(jì)律條令試卷含答案
- 婚姻矛盾糾紛調(diào)解培訓(xùn)課件
- 愚公移山英文 -中國故事英文版課件
- 《工程熱力學(xué)》(第四版)配套教學(xué)課件
- 有害物質(zhì)管控清單(歐盟)
- 乙酸乙酯的制備ppt課件
評論
0/150
提交評論