八縣一中高三數(shù)學(xué)試卷_第1頁(yè)
八縣一中高三數(shù)學(xué)試卷_第2頁(yè)
八縣一中高三數(shù)學(xué)試卷_第3頁(yè)
八縣一中高三數(shù)學(xué)試卷_第4頁(yè)
八縣一中高三數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

八縣一中高三數(shù)學(xué)試卷一、選擇題

1.在下列函數(shù)中,哪一個(gè)函數(shù)的圖像是中心對(duì)稱(chēng)的?

A.\(y=x^2\)

B.\(y=x^3\)

C.\(y=|x|\)

D.\(y=\sqrt{x}\)

2.已知等差數(shù)列\(zhòng)(\{a_n\}\)的前三項(xiàng)分別是2,5,8,則該數(shù)列的公差是:

A.2

B.3

C.4

D.5

3.下列各式中,正確的是:

A.\(a^2+b^2=(a+b)^2\)

B.\(a^2-b^2=(a+b)(a-b)\)

C.\(a^3-b^3=(a-b)(a^2+ab+b^2)\)

D.\(a^3+b^3=(a+b)(a^2-ab+b^2)\)

4.已知函數(shù)\(f(x)=\frac{1}{x}\),那么函數(shù)\(f(-x)\)的圖像與\(f(x)\)的圖像:

A.關(guān)于原點(diǎn)對(duì)稱(chēng)

B.關(guān)于y軸對(duì)稱(chēng)

C.關(guān)于x軸對(duì)稱(chēng)

D.關(guān)于直線(xiàn)\(y=x\)對(duì)稱(chēng)

5.在下列各對(duì)數(shù)中,相等的是:

A.\(\log_24\)和\(\log_42\)

B.\(\log_39\)和\(\log_93\)

C.\(\log_525\)和\(\log_255\)

D.\(\log_21\)和\(\log_42\)

6.已知等比數(shù)列\(zhòng)(\{a_n\}\)的前三項(xiàng)分別是3,6,12,則該數(shù)列的公比是:

A.2

B.3

C.4

D.6

7.已知方程\(2x^2-4x+2=0\)的解為:

A.\(x=1\)

B.\(x=2\)

C.\(x=1\)或\(x=2\)

D.\(x\)無(wú)解

8.若不等式\(x^2-4x+3>0\)的解集為\(A\),則\(A\)的取值范圍是:

A.\(x>3\)或\(x<1\)

B.\(x>2\)或\(x<2\)

C.\(x>3\)或\(x<1\)

D.\(x>2\)或\(x<1\)

9.已知函數(shù)\(f(x)=x^2-2x+1\)的圖像是:

A.拋物線(xiàn)

B.直線(xiàn)

C.圓

D.雙曲線(xiàn)

10.在下列各函數(shù)中,哪一個(gè)函數(shù)的圖像是單調(diào)遞增的?

A.\(y=-x^2\)

B.\(y=x^3\)

C.\(y=|x|\)

D.\(y=\sqrt{x}\)

二、判斷題

1.在直角坐標(biāo)系中,點(diǎn)\(A(1,2)\)和點(diǎn)\(B(-1,1)\)之間的距離是\(\sqrt{5}\)。()

2.函數(shù)\(f(x)=\frac{1}{x}\)在其定義域內(nèi)是連續(xù)的。()

3.等差數(shù)列的前\(n\)項(xiàng)和公式是\(S_n=\frac{n(a_1+a_n)}{2}\)。()

4.在實(shí)數(shù)范圍內(nèi),\(x^2+1\)的最小值是0。()

5.對(duì)數(shù)函數(shù)\(y=\log_ax\)(\(a>1\))在其定義域內(nèi)是增函數(shù)。()

三、填空題

1.若函數(shù)\(f(x)=2x+3\)和\(g(x)=x^2-1\)的圖像在點(diǎn)\((x,y)\)處相交,則\(x=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡(jiǎn)答題

1.簡(jiǎn)述一元二次方程\(ax^2+bx+c=0\)的判別式\(D=b^2-4ac\)的幾何意義。

2.證明:對(duì)于任意實(shí)數(shù)\(x\),有\(zhòng)((x-1)^2\geq0\)。

3.給定函數(shù)\(f(x)=\frac{x^2-4x+4}{x-2}\),請(qǐng)化簡(jiǎn)并求出其定義域。

4.請(qǐng)說(shuō)明等差數(shù)列和等比數(shù)列的前\(n\)項(xiàng)和公式,并給出一個(gè)例子說(shuō)明這兩個(gè)公式如何應(yīng)用。

5.請(qǐng)解釋對(duì)數(shù)函數(shù)\(y=\log_ax\)(\(a>1\))的圖像特征,并說(shuō)明其在哪些條件下是增函數(shù)。

五、計(jì)算題

1.計(jì)算下列積分:

\[

\int(3x^2-2x+1)\,dx

\]

2.解下列不等式:

\[

2x^2-5x+3>0

\]

3.已知函數(shù)\(f(x)=x^3-3x^2+4x+1\),求\(f'(x)\)。

4.在直角坐標(biāo)系中,已知點(diǎn)\(A(1,3)\)和\(B(-2,4)\),求線(xiàn)段\(AB\)的中點(diǎn)坐標(biāo)。

5.已知數(shù)列\(zhòng)(\{a_n\}\)是等比數(shù)列,且\(a_1=2\),\(a_3=16\),求該數(shù)列的公比\(q\)。

六、案例分析題

1.案例分析:某學(xué)校為了提高學(xué)生的數(shù)學(xué)成績(jī),決定開(kāi)展一次數(shù)學(xué)競(jìng)賽。競(jìng)賽的規(guī)則如下:參賽者需要解決5個(gè)問(wèn)題,每個(gè)問(wèn)題2分,滿(mǎn)分10分。競(jìng)賽結(jié)束后,學(xué)校發(fā)現(xiàn)成績(jī)分布呈現(xiàn)出以下特點(diǎn):

-成績(jī)主要集中在5分以下。

-部分學(xué)生的成績(jī)達(dá)到了滿(mǎn)分,但大多數(shù)學(xué)生的成績(jī)較低。

請(qǐng)分析這一現(xiàn)象可能的原因,并提出相應(yīng)的改進(jìn)措施。

2.案例分析:某班級(jí)在數(shù)學(xué)期中考試中,全體學(xué)生的平均分為70分,及格率為80%。在考試中,有20%的學(xué)生成績(jī)低于60分,有30%的學(xué)生成績(jī)?cè)?0-70分之間。請(qǐng)根據(jù)這些數(shù)據(jù),分析該班級(jí)學(xué)生在數(shù)學(xué)學(xué)習(xí)上的優(yōu)勢(shì)和劣勢(shì),并提出針對(duì)性的教學(xué)建議。

七、應(yīng)用題

1.應(yīng)用題:某工廠生產(chǎn)一批產(chǎn)品,已知每件產(chǎn)品的直接成本為10元,固定成本為5000元。如果每天生產(chǎn)100件產(chǎn)品,每件產(chǎn)品能賣(mài)12元,求該工廠的利潤(rùn)。

2.應(yīng)用題:一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別為\(x\)、\(y\)、\(z\),體積\(V=xyz\)。已知長(zhǎng)方體的表面積\(S=2(xy+yz+zx)\)為定值,求長(zhǎng)方體體積的最大值。

3.應(yīng)用題:某市計(jì)劃在A、B、C三個(gè)地點(diǎn)之間建立一條公交線(xiàn)路,已知A、B兩地相距30公里,B、C兩地相距40公里。為了使總費(fèi)用最低,應(yīng)該選擇哪條路線(xiàn)(直線(xiàn)或折線(xiàn)),并計(jì)算最低總費(fèi)用。

4.應(yīng)用題:某商店正在促銷(xiāo),對(duì)購(gòu)買(mǎi)超過(guò)100元的商品實(shí)行8折優(yōu)惠。如果一位顧客購(gòu)買(mǎi)了價(jià)值150元的商品,再買(mǎi)價(jià)值200元的商品,請(qǐng)計(jì)算顧客實(shí)際需要支付的金額。

本專(zhuān)業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題答案

1.C

2.B

3.C

4.A

5.C

6.A

7.C

8.A

9.A

10.B

二、判斷題答案

1.√

2.×

3.√

4.×

5.√

三、填空題答案

1.\(x=1\)

2.\(-2\)

3.\(x=\frac{3}{2}\)

4.\(S_n=\frac{n(a_1+a_n)}{2}\)

5.\(S_n=\frac{a_1(1-q^n)}{1-q}\)

四、簡(jiǎn)答題答案

1.一元二次方程的判別式\(D=b^2-4ac\)的幾何意義是:當(dāng)\(D>0\)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)\(D=0\)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)\(D<0\)時(shí),方程無(wú)實(shí)數(shù)根。

2.證明:\((x-1)^2=x^2-2x+1\),由于平方總是非負(fù)的,所以\((x-1)^2\geq0\)。

3.函數(shù)\(f(x)=\frac{x^2-4x+4}{x-2}\)可以化簡(jiǎn)為\(f(x)=x+2\),其定義域?yàn)樗袑?shí)數(shù),除了\(x=2\)。

4.等差數(shù)列的前\(n\)項(xiàng)和公式為\(S_n=\frac{n(a_1+a_n)}{2}\),等比數(shù)列的前\(n\)項(xiàng)和公式為\(S_n=\frac{a_1(1-

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論