鄭州體育職業(yè)學(xué)院《圖案設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
鄭州體育職業(yè)學(xué)院《圖案設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
鄭州體育職業(yè)學(xué)院《圖案設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
鄭州體育職業(yè)學(xué)院《圖案設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
鄭州體育職業(yè)學(xué)院《圖案設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁鄭州體育職業(yè)學(xué)院《圖案設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的醫(yī)學(xué)圖像分析任務(wù)中,假設(shè)要檢測醫(yī)學(xué)圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學(xué)圖像的特殊性?()A.結(jié)合先驗醫(yī)學(xué)知識和圖像特征B.使用通用的圖像檢測算法,不考慮醫(yī)學(xué)背景C.只對圖像的部分區(qū)域進行分析,忽略其他部分D.隨機標(biāo)記圖像中的區(qū)域為腫瘤區(qū)域2、計算機視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機視覺的說法,不正確的是()A.計算機視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機視覺面臨的挑戰(zhàn)3、在計算機視覺的視頻分析中,假設(shè)要對一段監(jiān)控視頻中的異常行為進行檢測。以下關(guān)于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運動特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時空特征,同時考慮空間和時間維度的信息4、假設(shè)要構(gòu)建一個能夠?qū)πl(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調(diào)查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是5、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法6、在計算機視覺的目標(biāo)識別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機制(AttentionMechanism)7、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設(shè)要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關(guān)于模型訓(xùn)練的挑戰(zhàn),哪一項是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓(xùn)練B.模型的訓(xùn)練時間過長,難以在短時間內(nèi)得到結(jié)果C.難以評估重建后的圖像質(zhì)量,沒有明確的標(biāo)準(zhǔn)D.計算資源需求過大,普通計算機難以承受8、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達到100%的準(zhǔn)確率9、在計算機視覺的姿態(tài)估計任務(wù)中,例如估計人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是10、在計算機視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準(zhǔn)確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學(xué)習(xí)算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)11、計算機視覺中的人臉檢測和識別是熱門研究方向。假設(shè)要在一個大規(guī)模的人臉數(shù)據(jù)庫中進行快速準(zhǔn)確的人臉識別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學(xué)習(xí)的方法D.基于主成分分析(PCA)的方法12、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP13、計算機視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來實現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會給目標(biāo)跟蹤帶來挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機交互和自動駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響14、計算機視覺中的工業(yè)檢測任務(wù)需要檢測產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對一批電子產(chǎn)品的外觀進行檢測,要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測方法在處理這種高精度要求的任務(wù)時最為適用?()A.機器視覺檢測B.人工目檢C.抽樣檢測D.基于統(tǒng)計的檢測15、假設(shè)要開發(fā)一個能夠?qū)χ讣y進行識別和認證的計算機視覺系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準(zhǔn)確性?()A.細節(jié)點提取B.方向場提取C.紋理特征提取D.以上都是16、計算機視覺在文物保護和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護計算機視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學(xué)習(xí)的方法更精確B.文物的復(fù)雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應(yīng)用不需要考慮對文物的非接觸性和無損性要求17、計算機視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個公共場所,以下關(guān)于計算機視覺在安防監(jiān)控中的應(yīng)用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進行身份識別和認證C.計算機視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力18、對于圖像的邊緣檢測任務(wù),假設(shè)要準(zhǔn)確檢測出圖像中物體的邊緣,同時抑制噪聲的影響。以下哪種邊緣檢測算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機生成邊緣檢測結(jié)果19、在計算機視覺的全景圖像生成任務(wù)中,將多幅局部圖像拼接成一幅全景圖像。假設(shè)要生成一個城市景觀的全景圖像,以下關(guān)于全景圖像生成方法的描述,哪一項是不正確的?()A.首先需要對局部圖像進行特征提取和匹配,找到它們之間的對應(yīng)關(guān)系B.可以使用圖像變形和融合技術(shù)來消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學(xué)習(xí)的方法能夠自動學(xué)習(xí)全景圖像的生成規(guī)律,提高拼接效果20、在計算機視覺的圖像風(fēng)格遷移任務(wù)中,將一張圖像的風(fēng)格應(yīng)用到另一張圖像上。假設(shè)要將一幅油畫的風(fēng)格遷移到一張照片上,以下關(guān)于圖像風(fēng)格遷移方法的描述,正確的是:()A.基于手工特征提取和風(fēng)格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風(fēng)格遷移B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在風(fēng)格遷移中無法生成多樣化的風(fēng)格效果C.圖像的內(nèi)容和風(fēng)格可以完全獨立地進行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風(fēng)格遷移的質(zhì)量二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述圖像的邊緣檢測算法。2、(本題5分)解釋計算機視覺中的多視圖幾何原理。3、(本題5分)解釋計算機視覺中注意力機制的作用。三、分析題(本大題共5個小題,共25分)1、(本題5分)一款新上市的圖書在封面設(shè)計上獨具匠心,成功吸引了讀者的注意。請?zhí)接懛饷嬖O(shè)計中圖像選擇、字體風(fēng)格、色彩搭配是如何與書籍內(nèi)容相呼應(yīng),以及對書籍銷售的促進作用。2、(本題5分)以某品牌的宣傳海報設(shè)計中的文案創(chuàng)意為例,闡述其如何運用富有創(chuàng)意的文案傳達品牌的信息和價值,吸引用戶的關(guān)注。3、(本題5分)研究某時尚品牌的社交媒體頁面設(shè)計,探討其如何通過視覺內(nèi)容吸引粉絲和提升品牌影響力。4、(本題5分)以一個電子產(chǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論