




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
SUPPORTPOOL
OFEXPERTSPROGRAMME
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision
Effectiveimplementationofdatasubjects’rights
byDr.KrisSHRISHAK
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
2
AspartoftheSPEprogramme,theEDPBmaycommissioncontractorstoprovidereportsandtoolsonspecifictopics.
TheviewsexpressedinthedeliverablesarethoseoftheirauthorsandtheydonotnecessarilyreflecttheofficialpositionoftheEDPB.TheEDPBdoesnotguaranteetheaccuracyoftheinformationincludedinthedeliverables.NeithertheEDPBnoranypersonactingontheEDPB’sbehalfmaybeheldresponsibleforanyusethatmaybemadeoftheinformationcontainedinthedeliverables.
Someexcerptsmayberedactedorremovedfromthedeliverablesastheirpublicationwouldunderminetheprotectionoflegitimateinterests,including,interalia,theprivacyandintegrityofanindividualregardingtheprotectionofpersonaldatainaccordancewithRegulation(EU)2018/1725and/orthecommercialinterestsofanaturalorlegalperson.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
3
TABLEOFCONTENTS
Introduction 4
1Challenges 4
2Howtodeleteandunlearn 5
3Whattounlearn 7
4Approximateunlearningverification 8
5ConcernswithMachineUnlearning 8
6LimitingpersonaldataoutputfromgenerativeAI 9
Conclusion 10
Bibliography 11
DocumentsubmittedinMarch2024
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
4
INTRODUCTION
TheGeneraldataProtectionRegulation(GDPR)empowersdatasubjectsthrougharangeofrights.Adatasubjecthastherighttoinformation(Articles12-14),therightofaccess(Article15),therighttorectification(Article16),therighttoerasure(Article17),therighttorestrictprocessing(Article18),therighttodataportability(Article20),therighttoobject(Article21)andtherightnottobesubjecttoadecisionbasedsolelyonautomatedprocessing(Article22).
Thisreportcoverstechniquesandmethodsthatcanbeusedforeffectiveimplementationofdatasubjectrights,specifically,therightstorectificationandtherighttoerasurewhenAIsystemshavebeendevelopedwithpersonaldata.Thisreportaddressestheserightstogetherbecauserectificationinvolveserasurefollowedbytheinclusionofnewdata.Thesetechniquesandmethodsaretheresultofearly-stageresearchbytheacademiccommunity.Improvementsandalternativeapproachesareexpectedtobedevelopedinthecomingyears.
1CHALLENGES
AIsystemsaretrainedondatathatisoftenmemorisedbythemodels(Carlinietal.,2021).Machinelearningmodelsbehavelikelossycompressorsoftrainingdataandtheperformanceofthesemodelsbasedondeeplearningisfurtherattributedtothisbehaviour(Schelter,2020;Tishby&Zaslavsky,2015).Inotherwords,machinelearningmodelsarecompressedversionsofthetrainingdata.Additionally,AImodelsarealsosusceptibletomembershipinferenceattacksthathelptoassesswhetherdataaboutapersonisinthetrainingdataset(Shokrietal.,2017).Thus,implementingtherighttoerasureandrectificationrequiresreversingthememorisationofpersonaldatabythemodel.Thisinvolvesdeletionof(1)thepersonaldatausedasinputfortraining,and(2)theinfluenceofthespecificdatapointsinthetrainedmodel.
Thereareseveralchallengestoeffectivelyimplementtheserights(Bourtouleetal.,2021):
1.Limitedunderstandingofhoweachdatapointimpactsthemodel:Thischallengeisparticularlyprevalentwiththeuseofdeepneuralnetworks.Itisnotknownhowspecificinputdatapointsimpacttheparametersofamodel.Thebestknownmethodsrelyon“influencefunctions”involvingexpensiveestimations(bycomputingsecond-orderderivativesofthetrainingalgorithm)(Cook&Weisberg,1980;Koh&Liang,2017).
2.Stochasticityoftraining:TrainingAImodelsisusuallyperformedbyrandomsamplingofbatchesofdatafromthedataset,randomorderingofthebatchesinhowandwhentheyareprocessed,andparallelisationwithouttime-synchronisation.Allthesemakethetrainingprocessprobabilistic.Asaresult,amodeltrainedwiththesamealgorithmanddatasetcouldresultindifferenttrainedmodels(Jagielskietal.,2023).
3.Incrementaltrainingprocess:Modelsaretrainedincrementallysuchthatanupdaterelyingonspecifictrainingdatapointwillaffectallsubsequentupdates.Inotherwords,updatesinthetrainingprocessdependonallpreviousupdates.Inthedistributedtrainingsettingoffederatedlearning,multipleclientskeeptheirdataandtrainamodellocallybeforesendingtheupdatestoacentralserver.Insuchasetting,evenwhenaclientonlyoncesendsitsupdateandcontributestotheglobalmodelatthecentralserver,thedataandthecontributionofthisclientinfluencesallfutureupdatestotheglobalmodel.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
5
4.Stochasticityoflearning:Inadditiontothetrainingprocess,thelearningalgorithmisalsoprobabilistic.Thechoiceoftheoptimiser,forexample,forneuralnetworkscanresultinmanydifferentlocalminima(resultoftheoptimisation).Thismakesitdifficulttocorrelatehowaspecificdatapointcontributedtothe“l(fā)earning”inthemodel.
2HOWTODELETEANDUNLEARN
1.DataCurationandProvenance:EssentialelementstoimplementtherightsinArticles15-17ofGDPRaredatacurationandprovenance.However,thesearenecessarybutnotsufficientforimplementingtheserightscompletelyastheydonotincludeinformationrelatedtohowthedatainfluencedthetrainedmodel.Theseareprerequisitesfortheotherapproachesinthisreport.
2.Retrainingofmodels:Deletingthemodel,removingthepersonaldatarequestedtobeerased,andthenretrainingthemodelwiththerestofthedataisthemethodthatimplementstherightsinArticles16-17oftheGDPReffectively.Forsmallmodels,thismethodworkswell.However,forlargermodels,thetrainingcostisveryexpensiveandoftenalternativeapproachesmightberequired,especiallywhennumerousdeletionrequestsareexpected.Furthermore,thisapproach,andmanyoftheotherapproaches,assumesthatthemodeldeveloperisinpossessionofthetrainingdatasetswhentherequirementtodeleteandretrainarises.
3.Exactunlearning:Toavoidretrainingtheentiremodel,approachestounlearnthedatahavebeenproposed.Despitethegrowingliterature,thereareveryfewunlearningmethodsthatarecurrentlymostlikelytobeeffective.
a.Modelagnosticunlearning:Thismethodisnotdependentonthespecificmachinelearningtechnique.Itistheonlyapproachwhichhasbeenshowntoworkfordeepneuralnetworks.Thisapproacheither(1)reliesonstoringmodelgradients(Wuetal.,2020),or(2)reliesonthemeasurementofsensitivityofmodelparameterstochangesindatasetsusedinfederatedlearning(Taoetal.,2024),or(3)modifiesthelearningprocesstobemoreconducivetounlearning(Bourtouleetal.,2021).
Thelatter,knownasSISA(Sharded,Isolated,Sliced,andAggregated),iscurrentlythebest-knownapproach.Itinvolvesmodifyingthetrainingprocess,butisindependentofspecificlearningalgorithms(Bourtouleetal.,2021).Thisapproachpresetstheorderinwhichthelearningalgorithmisqueriedtoeasetheunlearningprocess.Theapproachcanbedescribedasfollows:
i.Thetrainingdatasetisdividedintomultiple“shards”suchthateachtrainingdatapointispresentinonlyone“shard”.Thisallowsforanon-overlappingpartitionofthedataset.Itisalsopossibletofurther“slice”the“shards”sothatthetrainingismoremodularanddeletioniseasedfurther.
ii.Themodelisthentrainedoneachoftheseshardsorslices.Thislimitstheinfluenceofthedatapointstothesespecificshardsorslices.
iii.Whenarequestforerasureorrectificationarrives,unlearningisperformed,notbyretrainingtheentiremodel,butbyretrainingonlytheshardorslicethathadincludedthe“deleterequested”data.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
6
Thismethodisflexible.Forinstance,theshardscanbechosensuchthatthemostlikely“deleterequest”dataareinoneshard.Then,fewershardswillneedtoberetrained,assumingthatpersonaldataandnon-personaldataareseparatedaspartofdatacuration.
b.Modelintrinsicunlearning:ThesemethodsaredevelopedforspecificAItechniques.Forinstance,themethodsthataresuitablefordecisiontreesandrandomforestshavebeenshowntobeeffective(Brophy&Lowd,2021)byusinganewapproachtodevelopdecisiontreesandthenrelyingonstrategicthresholdingatdecisionnodesforcontinuousattributes,andathigh-levelrandomnodes.Thenthenecessarystatisticsarecachedatallthenodestofacilitateremovalofspecifictraininginstances,withouthavingtoretraintheentiredecisiontree.
c.Applicationspecificunlearning:Whileexactunlearningisgenerallyexpensiveintermsofcomputationandstorage,someapplicationsandtheiralgorithmsaremoresuitabletoexactunlearning.Specifically,recommendersystemsbasedonk-nearestneighbourmodelsarewellsuitedduetotheiruseofsparseinteractiondata.Suchmodelsarewidelyusedinmanytechniquesincludingcollaborativefilteringandrecentrecommendersystemapproachessuchasnext-basketrecommendation.Usingefficientdatastructures,sparsedataandparallelupdates,personaldatacanberemovedfromrecommendationsystems(Schelteretal.,2023).
4.ApproximateUnlearning:Significantamountoftechnicalliteratureonmachineunlearningfocusesonapproximateunlearning,wherethedataisnotdeleted,butinstead,themodelisadjustedsuchthattheprobabilityoftheinfluenceofthedata,estimatedbasedonproxysignals,onthemodelisreduced.Approximateunlearningislessexpensiveintermsofcomputationandstoragerequirements.
a.Finetuning:Onceamodelistrained,itcanbefinetunedformanypurposesincludingtheapproximateremovaloftheeffectofthedatathathasbeenrequestedtobedeleted(Golatkaretal.,2020;Warneckeetal.,2023).Whenadeletionrequestalongwiththe“removaldataset”(thedatatoberemoved)isreceived,themodelistrainedagainforafewepochsonthis“removaldataset”suchthatthemodel“forgets”it.
b.Influenceunlearning:Approximateunlearningapproacheshavebeenproposedthatrelyonestimatingtheinfluenceofspecificdataonthemodel(Izzoetal.,2021;Koh&Liang,2017).Thisestimationisthenusedtoupdatethemodelforunlearning,whichisakintofinetuning.Usually,theseapproachesalsorequireadditionalmodeltraining.However,toreducethecomputation,itisalsopossibletoprunethemodel(orreducethesize)beforetheunlearningprocess(Jiaetal.,2023).
c.Intentionalmisclassification:Whenarequesttodeletespecificdataaboutapersonisreceived,themodelownerintentionallymisclassifiesthesedatapoints.Thiscanbeachievedwithaccesstothepre-trainedmodelandthedatapointsprovidedbythedatasubjectwiththedeletionrequestbutdoesnotrequireaccesstotherestofthetrainingdataset(Chaetal.,2024).Anotherapproach,saliencyunlearning,tacklestheproblemofunlearningatthelevelofweightsratherthandataormodel.Itreliesonestimatingtheweightsthataremostrelevant(salient)forunlearningbeforedeployingrandomlabelsforthedatatobedeleted(Fanetal.,2024).Thisapproachhasbeenproposedforimageclassificationandgeneration.
d.Parameterdeletion:Anotherapproachtounlearnwithoutdeletingthedatafromthemodelbutremovingitsinfluenceinvolvesstoringalistofdataandparameterupdates
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
duringthetrainingprocess.Whenadeletionrequestarrives,theparameterupdatesareundone(Gravesetal.,2021).Duetotheneedtostoretheparameterupdates,thisapproachhasahighstoragerequirement,especiallyforlargemodels,althoughlessthanthatforexactunlearning.
5.Differentialprivacyandmodelretiringpolicy:Differentialprivacygivesamathematicalguaranteethatthereisaboundonthecontributionofindividualdatapointtothemodelandthatthiscontributionissmall.However,thecontributionisnotzero,
1
thusnecessitating“unlearning”(Chandrasekaranetal.,2021).Oneapproachistocombinedifferentialprivacywithapolicytoperiodicallyretireordeletethemodelandretrainadifferentiallyprivatemodel,insteadofretrainingforeverydeletionrequest.
Whenadeletionrequestisreceived,iftherelevantpersonaldataisinthepossessionofthedatacontroller,thenthedatashouldbedeleted.Themodeldeletionisnotperformedforeveryrequestbecauseitisunclearhowindividualpersonaldatapointsimpactthedifferentiallyprivatemodel.However,oncethereisasufficientlylargenumberofrequests,then,puttogether,thesedatapointswouldaffectthemodel(stillunknownhowexactly),andthusthereisreasonenoughtodeletethemodelandretrainthemodelwithdifferentialprivacy.
3WHATTOUNLEARN
1.Samples:Adeletionrequestforaspecificpieceofinformationorsampleaboutaperson.Methodsdescribedintheprevioussectionhavebeendevelopedforthissetting.
2.Features:Insomeapplications,featuresandlabelsmayholdcertainpersonalcharacteristicsthataretobedeleted.Anapproximateunlearningmethodhasbeenproposedforthispurposebyestimatingtheinfluenceofspecificfeaturesonthemodelparameters(Warneckeetal.,2023).Thismethodcanbeusedtounlearnfeaturesinatrainedmodelforthousandsofdatasubjects.Anotherapproachinvolvesestimatingthecorrelationbetweenfeaturesthatcouldrepresentthepersonalcharacteristicsandthentoprogressivelyunlearnthesefeatures(Guoetal.,2022).Thismethodismostapplicablefordeepneuralnetworksintheimagedomain,forexample,facialrecognitionsystems,wherethedeeperlayersoftheneuralnetworksaresmaller(Nguyenetal.,2022).
3.Class:AIsystemscanbedesignedtoclassifyoutputsintoone,twoormanydifferentclasses.Incertainapplications,thedatatobedeletedisrepresentedasaclassinthetrainedmodel.Insomefacialrecognitionapplications,alldatapointsaboutapersonintheformoffacialimagesbelongtoaparticularclassandifapersonrequestsfortheirpersonaldatatobedeleted,thentheclassificationshouldnotworkforthisperson’sclass.Acoupleofapproximateunlearningmethodsintroducenoisesuchthattheclassificationerrorforthedeletionclassismaximisedandthenthemodelis“repaired”tomaintaintheperformancefortherestofthedata(Chundawatetal.,2023;Tarunetal.,2024).Thesemethodsdonotdeleteallthesamplesassociatedwiththeclass,butinsteadmanipulatethetrainedmodelforthisclassdirectly.
1Itwouldbeimpossibleforamodeltolearnfromthetrainingdataifthecontributioniszero(Bourtouleetal.,2021).
7
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-
Effectiveimplementationofdatasubjects’rights
8
WhenimageclassificationorfacialrecognitiontechnologyisdevelopedbytrainingConvolutionalNeuralNetwork(CNN)modelswithfederatedlearning,theclassisselectivelyprunedbasedonextractingfeaturesintheimagesthatcontributetodifferentclasses(Wangetal.,2022).Thepersonmakingthedeletionrequestlocallyextractsthesefeaturesfortheirimagesandsendsittothecentralserver,whothenprunestheclassfromtheglobalmodel.
4.Client:WhenAIsystemsaredevelopedwithfederatedlearningthatincludescontributionfrommultipleclients,aclient(oraperson)mightrequestthattheirentirecontributiontotheglobalmodelduetotheirlocaldatasetbedeleted.Duetotheincrementaltrainingprocess,onlydeletingtheupdatestotheglobalmodelmadebythisclientisinsufficienttoremovetheinfluenceofthisclient’sdata.AnapproachknownasFedEraserstoreshistoricalparameterupdatesatacentralservertosanitiseallupdatesthatfollowedtheupdatesofthisclient(Liuetal.,2021).Thesanitisationprocessinvolvescollaborativeupdatesfromtheremainingclientswhosecontributionsarestillpartoftheglobalmodel.
4APPROXIMATEUNLEARNINGVERIFICATION
Approximateunlearningmethodshavebeenproposedwiththeclaimthattheyareindistinguishablefromretrainingthemodelfromscratchwithoutthedeleteddata.Theclaimsareusuallybasedonmetricssuchasindistinguishabilitytoahypotheticallymodelretrainedfromscratch,unlearningaccuracy,remainingaccuracyandmembershipinferenceattacks.
Unlearningaccuracyistheaccuracyoftheunlearnedmodelonthedataexpectedtobeforgotten.Remainingaccuracyistheaccuracyoftheunlearnedmodelontheremainingdata.Membershipinferenceattacks(MIAs)areusedinanattempttoextract“deleted”datafromtheupdatedmodel.Iftheprobabilityofsuchextractionisaround50%,thenthe“deletion”istreatedasasuccess.However,MIAisaprivacyattackandrelyingonitfortestingisunreliable.Awell-developedmodelwillnotbesusceptibletoMIA,inwhichcase,MIAcannotbeusedasaproxysignaltotestunlearning.
Furthermore,approximatelearninglacksstrongguarantees.Thesemetricsdonotaddressaverybasicconcern:itispossibletoobtaintwomodelswithsimilarweightsandparameterswithnon-overlappingtrainingdata(Thudietal.,2022).Thatis,removinganinfluenceofaparticularparameterisnotsufficienttohave“deleted”thedataastheinfluencecouldhavebeenfromadifferentdata.Moreover,theassumptionofhavingtounlearnamodelthatisindistinguishablefromretrainingfromscratchitselfmaynotbetherightapproach.Thisisbecauseamodelretrainedfromscratchcouldhavedifferentmodeldistributionsduetothestochasticityoftraining(Goeletal.,2022;Yang&Shami,2020).
5CONCERNSWITHMACHINEUNLEARNING
1.Privacy:Justlikemachinelearning,machineunlearningalsointroducesprivacyconcerns.Membershipinferenceattacks(Shokrietal.,2017)thathavebeenshowntoattackmachinelearningcanalsobeusedagainstmachineunlearning(Chenetal.,2021).Theconcernhereisthatwhenitispossibletoqueryamodeltwice,oncebeforeunlearningandonceafterunlearning,thepersonqueryingcoulddeducewhichdatawasdeleted.
2.Bias:Whendeletionrequestsaremade,minorityclassesaremoreadverselyaffectedbecausethedatasetsintherealworldarenotbalanced.Whenitcomestodatadeletionrequests,noteveryoneisequallylikelytomakesuchrequests.Ithasbeenshownthatthereisacorrelation
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
betweentheunlearningprobabilityandclasslabels(Koch&Soll,2023).Thus,itisimperativethataccuracyofmodelsforsub-categoriesareassessedafterunlearningtoassessforbias.
6LIMITINGPERSONALDATAOUTPUTFROMGENERATIVEAI
Theapproachesdiscussedthusfaraddressapplicationsincludingfacialrecognitiontechnologywherepersonaldataprocessingisconcerned.AIsystemsaresusceptibletoprivacyleakagesandtoadversarialattackssuchasMIA.ThisisalsotrueofgenerativeAIsystems,whichcouldgeneratepersonaldataaspartofitsoutput.TextgenerationAIbasedonlargelanguagemodelshavebeenshowntobemoresusceptibletoMIAthansmallmodels(Carlinietal.,2021).
IngenerativeAIsystems,personaldataisoutputwhenexplicitlyprompted(E.g.,Givemethebirthdateof[personname]).Thesamecantakeplacewithimageandvideogenerationtoolsaswell.Personaldataisalsooutputwhennotexplicitlyprompted.ThesegenerativeAItoolsmakethingsupor“hallucinate”(Maynezetal.,2020)andgeneratefactuallyincorrectcontentthatcouldrevealpersonaldataaboutpeople.E.g.,wheninformationaboutonepersonisaskedandalargelanguagemodeloutputsinformationaboutanotherperson(withtheirname)(D.Zhangetal.,2023).
TheareaofresearchtolimitgenerationofpersonaldatafromgenerativeAIisnew,andmuchlessmaturethanthefieldofmachineunlearning,whichbyitselfisquiteyoung.
1.Modelfinetuning:Inthecaseofdiffusionmodels(e.g.,StableDiffusion),amethodhasbeenproposedtofinetunethemodelsuchthatspecificconceptsarenotoutputintheimages(Gandikotaetal.,2023).Thismethodeliminatesvisualconceptssuchasspecificartisticstyles,nudityandcertainobjects.Asimilarapproachcanbeusedtopreventgenerationofimageswithspecificpersonalcharacteristics(E.J.Zhangetal.,2023).Anotherapproachknownas“selectiveamnesia”appliescontinuouslearningtoforgetconceptsfromgenerativemodelsbasedonvariationalautoencodersanddiffusionmodels(Heng&Soh,2024).
2.Dataredaction:Avariantofmodelfinetuningusesdataandclassredactiontechniquestolimitgenerationofspecificoutputsingenerativeadversarialnetworks(GANs).Asetofdatathatshouldnotbegeneratedisselectedasaredactionset,whichisthenusedtogeneratea“fakedistribution”suchthatoutputsfallingwithintheredactionsetarepenalized(Kong&Chaudhuri,2023).Thisapproachisbasedonsimilarapproachesthatre-trainmodelstolimitgenerationofspecificoutputs(Asokan&Seelamantula,2020;Hannekeetal.,2018;Sinhaetal.,2021).
3.Outputmodification:Theoutputofimagegeneratorscanbemodifiedtonotgeneratespecifickindsofimages.Thiscanbeachievedbytrainingamachinelearningclassifiertomodifyoutputsbeforetheyarerevealedtotheendusers(Randoetal.,2022)orbyincorporatingadditionalinformationandguidingtheinferenceprocess(Schramowskietal.,2023).Alternatively,reinforcementlearningwithhumanfeedbackcanbeused(Baietal.,2022;Ouyangetal.,2022)topreventgenerationofpersonaldata.However,suchmethodshave
manyshortcomings(Casperetal.,2023)andareshowntobeeasytocircumvent,especiallywhentheenduserhasaccesstotheparameters,asisthecasewithfullyopen-sourcemodels.
2
2/r/StableDiffusion/comments/wv2nw0/tutorial_how_to_remove_the_safety_filter_i
n_5/
9
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
10
CONCLUSION
TheGDPRoffersdatasubjectswithmanyrights.ThisreportcoverstechniquesandmethodstoimplementtherighttorectificationandtherighttoerasurewhenAIsystemsprocesspersonaldata.Implementingtheserightsischallengingbutmanytechnicalapproacheshavebeenproposed.Datacurationandprovenanceareprerequisitesfortheseapproaches.SomeofthechallengessuchasstochasticityoftrainingAImodelscanbemodifiedtomakecompliancewithdataerasurerequestseasier(Bourtouleetal.,2021).Suchdesignchoicesmighthaveperformancetrade-offbutareanaspectofdataprotectionbydesign.OtherimportantrightsofferedbytheGDPRtodatasubjectsarelefttofutureprojects.
Asastrongrecommendationregardingdataprotection,onlytheuseofcompletelyanonymiseddataforthedevelopmentanddeploymentofAImodelswouldavoidobligationsrelatedtothecorrectionanddeletionofpersonaldatainAImodels.Ifitisnecessarytousepersonaldata,includingpseudonymiseddata,todevelopanAImodelthenthelegalobligationstoimplementdatasubjectrightsapply.TheupdatesandchangesmadetotheAImodelshouldbeadequatelyloggedanddocumentedsuchthatsubsequentrequestforrectificationanderasureofpersonaldatacanbefulfilled.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
11
BIBLIOGRAPHY
Asokan,S.,&Seelamantula,C.(2020).TeachingaGANwhatnottolearn.AdvancesinNeuralInformationProcessingSystems,33,3964–3975.
Bai,Y.,Kadavath,S.,Kundu,S.,Askell,A.,Kernion,J.,Jones,A.,Chen,A.,Goldie,A.,Mirhoseini,A.,
McKinnon,C.,Chen,C.,Olsson,C.,Olah,C.,Hernandez,D.,Drain,D.,Ganguli,D.,Li,D.,Tran-Johnson,E.,Perez,E.,…Kaplan,J.(2022).ConstitutionalAI:HarmlessnessfromAIFeedback.CoRR,
abs/2212.08073.
/10.48550/ARXIV.2212.08073
Bourtoule,L.,Chandrasekaran,V.,Choquette-Choo,C.A.,Jia,H.,Travers,A.,Zhang,B.,Lie,D.,&Papernot,N.(2021).MachineUnlearning.2021IEEESymposiumonSecurityandPrivacy(SP),141–159.
/10.1109/SP40001.2021.00019
Brophy,J.,&Lowd,D.(2021).MachineUnlearningforRandomForests.ICML,139,1092–1104.
Carlini,N.,Tramèr,F.,Wallace,E.,Jagielski,M.,Herbert-Voss,A.,Lee,K.,Roberts,A.,Brown,T.B.,Song,D.,Erlingsson,ú.,Oprea,A.,&Raffel,C.(2021).ExtractingTrainingDatafromLargeLanguageModels.USENIXSecuritySymposium,2633–2650.
Casper,S.,Davies,X.,Shi,C.,Gilbert,T.K.,Scheurer,J.,Rando,J.,Freedman,R.,Korbak,T.,Lindner,D.,Freire,P.,Wang,T.,Marks,S.,Segerie,C.-R.,Carroll,M.,Peng,A.,Christoffersen,P.,Damani,M.,Slocum,S.,Anwar,U.,…Hadfield-Menell,D.(2023).OpenProblemsandFundamentalLimitationsofReinforcementLearningfromHumanFeedback.
/10.48550/ARXIV.2307.15217
Cha,S.,Cho,S.,Hwang,D.,Lee,H.,Moon,T.,&Lee,M.(2024).LearningtoUnlearn:Instance-wiseUnlearningforPre-trainedClassifiers(arXiv:2301.11578).arXiv.
/abs/2301.11578
Chandrasekaran,V.,Jia,H.,Thudi,A.,Travers,A.,Ya
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)節(jié)能燈整燈600萬支項(xiàng)目可行性研究報(bào)告?zhèn)浒噶㈨?xiàng)
- 2025年度餐飲業(yè)員工培訓(xùn)與發(fā)展雇傭合同范本
- 2025-2030年中國實(shí)木衣帽架項(xiàng)目投資可行性研究分析報(bào)告
- 2025年度清潔能源項(xiàng)目投資合同范本D008(專業(yè)版)
- 2025-2030年中國歐式木鋁復(fù)合門窗項(xiàng)目投資可行性研究分析報(bào)告
- 土石方工程項(xiàng)目申請報(bào)告可行性研究報(bào)告
- 2025年度建筑企業(yè)資質(zhì)升級咨詢服務(wù)承包合同
- 生態(tài)旅游景區(qū)項(xiàng)目可行性報(bào)告
- 2025年度互聯(lián)網(wǎng)金融服務(wù)合同范本
- 2025柴油銷售渠道拓展合作協(xié)議
- 2024年長沙民政職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 2024年精對苯二甲酸市場分析報(bào)告
- 成人手術(shù)后疼痛評估與護(hù)理團(tuán)體標(biāo)準(zhǔn)
- 2025年中考數(shù)學(xué)二輪專題復(fù)習(xí) 題型四-二次函數(shù)圖象與性質(zhì)綜合題
- 春節(jié)申遺成功的意義
- 上海市黃浦區(qū)2022-2023學(xué)年九年級上學(xué)期期末化學(xué)試卷(一模)
- 子女放棄繼承房產(chǎn)協(xié)議書
- 施工方案與技術(shù)措施合理性、科學(xué)性與可行性
- 小學(xué)體育課件《立定跳遠(yuǎn)課件》課件
- 《生物經(jīng)濟(jì)學(xué)》課程教學(xué)大綱
- 2018中國技能?賽全國選拔賽“3D數(shù)字游戲藝術(shù)”項(xiàng)?技能樣題
評論
0/150
提交評論