2025高考數(shù)學(xué)考二輪專題復(fù)習(xí)-第六講-導(dǎo)數(shù)及其應(yīng)用、基本不等式-專項訓(xùn)練(含解析)_第1頁
2025高考數(shù)學(xué)考二輪專題復(fù)習(xí)-第六講-導(dǎo)數(shù)及其應(yīng)用、基本不等式-專項訓(xùn)練(含解析)_第2頁
2025高考數(shù)學(xué)考二輪專題復(fù)習(xí)-第六講-導(dǎo)數(shù)及其應(yīng)用、基本不等式-專項訓(xùn)練(含解析)_第3頁
2025高考數(shù)學(xué)考二輪專題復(fù)習(xí)-第六講-導(dǎo)數(shù)及其應(yīng)用、基本不等式-專項訓(xùn)練(含解析)_第4頁
2025高考數(shù)學(xué)考二輪專題復(fù)習(xí)-第六講-導(dǎo)數(shù)及其應(yīng)用、基本不等式-專項訓(xùn)練(含解析)_第5頁
已閱讀5頁,還剩53頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025高考數(shù)學(xué)考二輪專題復(fù)習(xí)-第六講-導(dǎo)數(shù)及其應(yīng)用、基本不等式-專項訓(xùn)練一:考情分析命題解讀考向考查統(tǒng)計1.高考對導(dǎo)數(shù)的考查,重點考查導(dǎo)數(shù)的計算、四則運算法則的應(yīng)用和求切線方程;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次)以及借助函數(shù)圖象,了解函數(shù)在某點取得極值的必要和充分條件,會用導(dǎo)數(shù)求函數(shù)的極大值、極小值,會求閉區(qū)間上函數(shù)的最大值、最小值。2.高考對基本不等式的考查,應(yīng)適當(dāng)關(guān)注利用基本不等式大小判斷、求最值和求取值范圍的問題。導(dǎo)數(shù)與切線2022·新高考Ⅰ卷,102022·新高考Ⅰ卷,152022·新高考Ⅱ卷,142024·新高考Ⅰ卷,132024·新高考Ⅱ卷,16(1)導(dǎo)數(shù)與函數(shù)單調(diào)性、最值及恒成立問題2022·新高考Ⅰ卷,22(1)2023·新高考Ⅰ卷,192024·新高考Ⅰ卷,18(1)2022·新高考Ⅱ卷,142022·新高考Ⅱ卷,22(1)2023·新高考Ⅱ卷,22(1)導(dǎo)數(shù)與函數(shù)極值、極值點2023·新高考Ⅱ卷,112024·新高考Ⅱ卷,16(2)導(dǎo)數(shù)與比較大小、基本不等式2022·新高考Ⅰ卷,72022·新高考Ⅱ卷,12二:2024高考命題分析2024年高考新高考Ⅰ卷考查了導(dǎo)數(shù)與切線和函數(shù)最值的知識點,Ⅱ卷也考查到了切線,但是是體現(xiàn)在大題16題的第一問中,同時也考查到了恒成立問題。切線問題備考時注意含參數(shù)和公切線的問題即可,難度一般都是較易和適中。導(dǎo)數(shù)考查應(yīng)關(guān)注:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值、不等式證明等問題。導(dǎo)數(shù)常結(jié)合函數(shù)的零點、最值等問題綜合考查,比如含函數(shù)單調(diào)性問題、恒成立問題等,理解劃歸與轉(zhuǎn)化思想、分類討論思想、函數(shù)與方程思想的應(yīng)用。預(yù)計2025年高考還是主要考查導(dǎo)數(shù)與切線及單調(diào)性問題。三:試題精講一、填空題1.(2024新高考Ⅰ卷·13)若曲線在點處的切線也是曲線的切線,則.二、解答題2.(2024新高考Ⅰ卷·18)已知函數(shù)(1)若,且,求的最小值;3.(2024新高考Ⅱ卷·16)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.高考真題練一、單選題1.(2022新高考Ⅰ卷·7)設(shè),則(

)A. B. C. D.2.(2023新高考Ⅱ卷·6)已知函數(shù)在區(qū)間上單調(diào)遞增,則a的最小值為(

).A. B.e C. D.二、多選題3.(2022新高考Ⅱ卷·12)若x,y滿足,則(

)A. B.C. D.4.(2023新高考Ⅱ卷·11)若函數(shù)既有極大值也有極小值,則(

).A. B. C. D.三、填空題5.(2022新高考Ⅰ卷·15)若曲線有兩條過坐標(biāo)原點的切線,則a的取值范圍是.6.(2022新高考Ⅱ卷·14)曲線過坐標(biāo)原點的兩條切線的方程為,.四、解答題7.(2022新高考Ⅰ卷·22)已知函數(shù)和有相同的最小值.(1)求a;8.(2023新高考Ⅰ卷·19)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時,.9.(2022新高考Ⅱ卷·22)已知函數(shù).(1)當(dāng)時,討論的單調(diào)性;10.(2023新高考Ⅱ卷·22)(1)證明:當(dāng)時,;知識點總結(jié)一、導(dǎo)數(shù)的運算1、求導(dǎo)的基本公式基本初等函數(shù)導(dǎo)函數(shù)(為常數(shù))2、導(dǎo)數(shù)的四則運算法則(1)函數(shù)和差求導(dǎo)法則:;(2)函數(shù)積的求導(dǎo)法則:;(3)函數(shù)商的求導(dǎo)法則:,則.3、復(fù)合函數(shù)求導(dǎo)數(shù)復(fù)合函數(shù)的導(dǎo)數(shù)和函數(shù),的導(dǎo)數(shù)間關(guān)系為:4、切線問題(1)在點的切線方程切線方程的計算:函數(shù)在點處的切線方程為,抓住關(guān)鍵.(2)過點的切線方程設(shè)切點為,則斜率,過切點的切線方程為:,又因為切線方程過點,所以然后解出的值.(有幾個值,就有幾條切線)注意:在做此類題目時要分清題目提供的點在曲線上還是在曲線外.二、單調(diào)性基礎(chǔ)問題1、函數(shù)的單調(diào)性函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).2、已知函數(shù)的單調(diào)性問題=1\*GB3①若在某個區(qū)間上單調(diào)遞增,則在該區(qū)間上有恒成立(但不恒等于0);反之,要滿足,才能得出在某個區(qū)間上單調(diào)遞增;=2\*GB3②若在某個區(qū)間上單調(diào)遞減,則在該區(qū)間上有恒成立(但不恒等于0);反之,要滿足,才能得出在某個區(qū)間上單調(diào)遞減.三、討論單調(diào)區(qū)間問題類型一:不含參數(shù)單調(diào)性討論(1)求導(dǎo)化簡定義域(化簡應(yīng)先通分,盡可能因式分解;定義域需要注意是否是連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導(dǎo)函數(shù)中未知正負(fù),需要單獨討論的部分.定號部分:已知恒正或恒負(fù),無需單獨討論的部分);(3)求根作圖得結(jié)論(如能直接求出導(dǎo)函數(shù)等于0的根,并能做出導(dǎo)函數(shù)與x軸位置關(guān)系圖,則導(dǎo)函數(shù)正負(fù)區(qū)間段已知,可直接得出結(jié)論);(4)未得結(jié)論斷正負(fù)(若不能通過第三步直接得出結(jié)論,則先觀察導(dǎo)函數(shù)整體的正負(fù));(5)正負(fù)未知看零點(若導(dǎo)函數(shù)正負(fù)難判斷,則觀察導(dǎo)函數(shù)零點);(6)一階復(fù)雜求二階(找到零點后仍難確定正負(fù)區(qū)間段,或一階導(dǎo)函數(shù)無法觀察出零點,則求二階導(dǎo));求二階導(dǎo)往往需要構(gòu)造新函數(shù),令一階導(dǎo)函數(shù)或一階導(dǎo)函數(shù)中變號部分為新函數(shù),對新函數(shù)再求導(dǎo).(7)借助二階定區(qū)間(通過二階導(dǎo)正負(fù)判斷一階導(dǎo)函數(shù)的單調(diào)性,進而判斷一階導(dǎo)函數(shù)正負(fù)區(qū)間段);類型二:含參數(shù)單調(diào)性討論(1)求導(dǎo)化簡定義域(化簡應(yīng)先通分,然后能因式分解要進行因式分解,定義域需要注意是否是一個連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導(dǎo)函數(shù)中未知正負(fù),需要單獨討論的部分.定號部分:已知恒正或恒負(fù),無需單獨討論的部分);(3)恒正恒負(fù)先討論(變號部分因為參數(shù)的取值恒正恒負(fù));然后再求有效根;(4)根的分布來定參(此處需要從兩方面考慮:根是否在定義域內(nèi)和多根之間的大小關(guān)系);(5)導(dǎo)數(shù)圖像定區(qū)間;四、極值與最值1、函數(shù)的極值函數(shù)在點附近有定義,如果對附近的所有點都有,則稱是函數(shù)的一個極大值,記作.如果對附近的所有點都有,則稱是函數(shù)的一個極小值,記作.極大值與極小值統(tǒng)稱為極值,稱為極值點.求可導(dǎo)函數(shù)極值的一般步驟(1)先確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)求方程的根;(4)檢驗在方程的根的左右兩側(cè)的符號,如果在根的左側(cè)附近為正,在右側(cè)附近為負(fù),那么函數(shù)在這個根處取得極大值;如果在根的左側(cè)附近為負(fù),在右側(cè)附近為正,那么函數(shù)在這個根處取得極小值.注:①可導(dǎo)函數(shù)在點處取得極值的充要條件是:是導(dǎo)函數(shù)的變號零點,即,且在左側(cè)與右側(cè),的符號導(dǎo)號.②是為極值點的既不充分也不必要條件,如,,但不是極值點.另外,極值點也可以是不可導(dǎo)的,如函數(shù),在極小值點是不可導(dǎo)的,于是有如下結(jié)論:為可導(dǎo)函數(shù)的極值點;但為的極值點.2、函數(shù)的最值函數(shù)最大值為極大值與靠近極小值的端點之間的最大者;函數(shù)最小值為極小值與靠近極大值的端點之間的最小者.導(dǎo)函數(shù)為(1)當(dāng)時,最大值是與中的最大者;最小值是與中的最小者.(2)當(dāng)時,最大值是與中的最大者;最小值是與中的最小者.一般地,設(shè)是定義在上的函數(shù),在內(nèi)有導(dǎo)數(shù),求函數(shù)在上的最大值與最小值可分為兩步進行:(1)求在內(nèi)的極值(極大值或極小值);(2)將的各極值與和比較,其中最大的一個為最大值,最小的一個為最小值.【導(dǎo)數(shù)及其應(yīng)用常用結(jié)論】1、恒成立和有解問題(1)若函數(shù)在區(qū)間D上存在最小值和最大值,則不等式在區(qū)間D上恒成立;不等式在區(qū)間D上恒成立;不等式在區(qū)間D上恒成立;不等式在區(qū)間D上恒成立;(2)若函數(shù)在區(qū)間D上不存在最大(?。┲?,且值域為,則不等式在區(qū)間D上恒成立.不等式在區(qū)間D上恒成立.(3)若函數(shù)在區(qū)間D上存在最小值和最大值,即,則對不等式有解問題有以下結(jié)論:不等式在區(qū)間D上有解;不等式在區(qū)間D上有解;不等式在區(qū)間D上有解;不等式在區(qū)間D上有解;(4)若函數(shù)在區(qū)間D上不存在最大(?。┲担缰涤驗?,則對不等式有解問題有以下結(jié)論:不等式在區(qū)間D上有解不等式在區(qū)間D上有解(5)對于任意的,總存在,使得;(6)對于任意的,總存在,使得;(7)若存在,對于任意的,使得;(8)若存在,對于任意的,使得;(9)對于任意的,使得;(10)對于任意的,使得;(11)若存在,總存在,使得(12)若存在,總存在,使得.名校模擬練一、單選題1.(2024·河北保定·三模)曲線在點處的切線與兩坐標(biāo)軸所圍成的三角形的面積為(

)A. B. C. D.2.(2024·陜西西安·三模)已知函數(shù)則在點處的切線方程為(

)A. B. C. D.3.(2024·河北保定·三模)已知二次函數(shù)(且)的圖象與曲線交于點P,與x軸交于點A(異于點O),若曲線在點P處的切線為l,且l與AP垂直,則a的值為(

)A. B. C. D.4.(2024·貴州六盤水·三模)已知曲線的一條切線方程為,則實數(shù)()A. B. C.1 D.25.(2024·湖南長沙·二模)已知,,直線與曲線相切,則的最小值是(

)A.4 B.3 C.2 D.16.(2024·貴州黔東南·二模)已知正實數(shù),滿足,則的最大值為(

)A.0 B. C.1 D.7.(2024·福建泉州·二模)在等比數(shù)列中,是函數(shù)的兩個極值點,若,則t的值為(

)A. B. C.4 D.58.(2024·天津和平·三模)已知函數(shù)(,且),,若函數(shù)在區(qū)間上恰有3個極大值點,則的取值范圍為(

)A. B.. C. D.9.(2024·遼寧·二模)已知正實數(shù),記,則的最小值為(

)A. B.2 C.1 D.10.(2024·新疆喀什·三模)已知,,,則(

)A. B. C. D.11.(2024·安徽合肥·三模)已知函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若滿足:,,則下列判斷正確的是(

)A. B.C. D.二、多選題12.(2024·河北衡水·三模)已知函數(shù),是函數(shù)的一個極值點,則下列說法正確的是(

)A. B.函數(shù)在區(qū)間上單調(diào)遞減C.過點能作兩條不同直線與相切 D.函數(shù)有5個零點13.(2024·重慶·三模)若函數(shù)既有極小值又有極大值,則()A. B. C. D.14.(2024·山西太原·三模)已知是函數(shù)的極值點,若,則下列結(jié)論正確的是(

)A.的對稱中心為 B.C. D.15.(2024·河北·三模)已知函數(shù)及其導(dǎo)函數(shù)的定義域均為,記,若為偶函數(shù),為奇函數(shù),則下列結(jié)論正確的是(

)A.的圖象關(guān)于直線對稱. B.的圖象關(guān)于點對稱.C. D.三、填空題16.(2024·上海·三模)設(shè)曲線和曲線在它們的公共點處有相同的切線,則的值為.17.(2024·上海·三模)若函數(shù)在上存在最小值,則實數(shù)a的取值范圍是.18.(2024·上海閔行·三模)早在西元前6世紀(jì),畢達哥拉斯學(xué)派已經(jīng)知道算術(shù)中項,幾何中項以及調(diào)和中項,畢達哥拉斯學(xué)派哲學(xué)家阿契塔在《論音樂》中定義了上述三類中項,其中算術(shù)中項,幾何中項的定義與今天大致相同.若,則的最小值為.19.(2024·廣東·三模)設(shè)實數(shù)x、y、z、t滿足不等式,則的最小值為.20.(2024·浙江紹興·三模)若,且,則的最小值是.21.(2024·河北·三模)已知對任意恒成立,則實數(shù)的取值范圍是.22.(2024·福建南平·二模)函數(shù)在區(qū)間上單調(diào)遞增,且在區(qū)間上恰有兩個極值點,則的取值范圍是.23.(2024·云南昆明·三模)過點可以向曲線作條切線,寫出滿足條件的一組有序?qū)崝?shù)對24.(2024·河北滄州·三模)若不等式,對于恒成立,則的最大值為.25.(2024·貴州貴陽·三模)已知函數(shù),若函數(shù)的最小值恰好為0,則實數(shù)的最小值是參考答案與詳細(xì)解析一:考情分析命題解讀考向考查統(tǒng)計1.高考對導(dǎo)數(shù)的考查,重點考查導(dǎo)數(shù)的計算、四則運算法則的應(yīng)用和求切線方程;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次)以及借助函數(shù)圖象,了解函數(shù)在某點取得極值的必要和充分條件,會用導(dǎo)數(shù)求函數(shù)的極大值、極小值,會求閉區(qū)間上函數(shù)的最大值、最小值。2.高考對基本不等式的考查,應(yīng)適當(dāng)關(guān)注利用基本不等式大小判斷、求最值和求取值范圍的問題。導(dǎo)數(shù)與切線2022·新高考Ⅰ卷,102022·新高考Ⅰ卷,152022·新高考Ⅱ卷,142024·新高考Ⅰ卷,132024·新高考Ⅱ卷,16(1)導(dǎo)數(shù)與函數(shù)單調(diào)性、最值及恒成立問題2022·新高考Ⅰ卷,22(1)2023·新高考Ⅰ卷,192024·新高考Ⅰ卷,18(1)2022·新高考Ⅱ卷,142022·新高考Ⅱ卷,22(1)2023·新高考Ⅱ卷,22(1)導(dǎo)數(shù)與函數(shù)極值、極值點2023·新高考Ⅱ卷,112024·新高考Ⅱ卷,16(2)導(dǎo)數(shù)與比較大小、基本不等式2022·新高考Ⅰ卷,72022·新高考Ⅱ卷,12二:2024高考命題分析2024年高考新高考Ⅰ卷考查了導(dǎo)數(shù)與切線和函數(shù)最值的知識點,Ⅱ卷也考查到了切線,但是是體現(xiàn)在大題16題的第一問中,同時也考查到了恒成立問題。切線問題備考時注意含參數(shù)和公切線的問題即可,難度一般都是較易和適中。導(dǎo)數(shù)考查應(yīng)關(guān)注:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值、不等式證明等問題。導(dǎo)數(shù)常結(jié)合函數(shù)的零點、最值等問題綜合考查,比如含函數(shù)單調(diào)性問題、恒成立問題等,理解劃歸與轉(zhuǎn)化思想、分類討論思想、函數(shù)與方程思想的應(yīng)用。預(yù)計2025年高考還是主要考查導(dǎo)數(shù)與切線及單調(diào)性問題。三:試題精講一、填空題1.(2024新高考Ⅰ卷·13)若曲線在點處的切線也是曲線的切線,則.【答案】【分析】先求出曲線在的切線方程,再設(shè)曲線的切點為,求出,利用公切線斜率相等求出,表示出切線方程,結(jié)合兩切線方程相同即可求解.【詳解】由得,,故曲線在處的切線方程為;由得,設(shè)切線與曲線相切的切點為,由兩曲線有公切線得,解得,則切點為,切線方程為,根據(jù)兩切線重合,所以,解得.故答案為:二、解答題2.(2024新高考Ⅰ卷·18)已知函數(shù)(1)若,且,求的最小值;【答案】(1)(2)證明見解析(3)【分析】(1)求出后根據(jù)可求的最小值;(2)設(shè)為圖象上任意一點,可證關(guān)于的對稱點為也在函數(shù)的圖像上,從而可證對稱性;(3)根據(jù)題設(shè)可判斷即,再根據(jù)在上恒成立可求得.【詳解】(1)時,,其中,則,因為,當(dāng)且僅當(dāng)時等號成立,故,而成立,故即,所以的最小值為.,3.(2024新高考Ⅱ卷·16)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.【答案】(1)(2)【分析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義求切線方程;(2)解法一:求導(dǎo),分析和兩種情況,利用導(dǎo)數(shù)判斷單調(diào)性和極值,分析可得,構(gòu)建函數(shù)解不等式即可;解法二:求導(dǎo),可知有零點,可得,進而利用導(dǎo)數(shù)求的單調(diào)性和極值,分析可得,構(gòu)建函數(shù)解不等式即可.【詳解】(1)當(dāng)時,則,,可得,,即切點坐標(biāo)為,切線斜率,所以切線方程為,即.(2)解法一:因為的定義域為,且,若,則對任意恒成立,可知在上單調(diào)遞增,無極值,不合題意;若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無極大值,由題意可得:,即,構(gòu)建,則,可知在內(nèi)單調(diào)遞增,且,不等式等價于,解得,所以a的取值范圍為;解法二:因為的定義域為,且,若有極小值,則有零點,令,可得,可知與有交點,則,若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無極大值,符合題意,由題意可得:,即,構(gòu)建,因為則在內(nèi)單調(diào)遞增,可知在內(nèi)單調(diào)遞增,且,不等式等價于,解得,所以a的取值范圍為.高考真題練一、單選題1.(2022新高考Ⅰ卷·7)設(shè),則(

)A. B. C. D.【答案】C【分析】構(gòu)造函數(shù),導(dǎo)數(shù)判斷其單調(diào)性,由此確定的大小.【詳解】方法一:構(gòu)造法設(shè),因為,當(dāng)時,,當(dāng)時,所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,所以,故,即,所以,所以,故,所以,故,設(shè),則,令,,當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,,函數(shù)單調(diào)遞增,又,所以當(dāng)時,,所以當(dāng)時,,函數(shù)單調(diào)遞增,所以,即,所以故選:C.方法二:比較法解:,,,①,令則,故在上單調(diào)遞減,可得,即,所以;②,令則,令,所以,所以在上單調(diào)遞增,可得,即,所以在上單調(diào)遞增,可得,即,所以故2.(2023新高考Ⅱ卷·6)已知函數(shù)在區(qū)間上單調(diào)遞增,則a的最小值為(

).A. B.e C. D.【答案】C【分析】根據(jù)在上恒成立,再根據(jù)分參求最值即可求出.【詳解】依題可知,在上恒成立,顯然,所以,設(shè),所以,所以在上單調(diào)遞增,,故,即,即a的最小值為.故選:C.二、多選題3.(2022新高考Ⅱ卷·12)若x,y滿足,則(

)A. B.C. D.【答案】BC【分析】根據(jù)基本不等式或者取特值即可判斷各選項的真假.【詳解】因為(R),由可變形為,,解得,當(dāng)且僅當(dāng)時,,當(dāng)且僅當(dāng)時,,所以A錯誤,B正確;由可變形為,解得,當(dāng)且僅當(dāng)時取等號,所以C正確;因為變形可得,設(shè),所以,因此,所以當(dāng)時滿足等式,但是不成立,所以D錯誤.故選:BC.4.(2023新高考Ⅱ卷·11)若函數(shù)既有極大值也有極小值,則(

).A. B. C. D.【答案】BCD【分析】求出函數(shù)的導(dǎo)數(shù),由已知可得在上有兩個變號零點,轉(zhuǎn)化為一元二次方程有兩個不等的正根判斷作答.【詳解】函數(shù)的定義域為,求導(dǎo)得,因為函數(shù)既有極大值也有極小值,則函數(shù)在上有兩個變號零點,而,因此方程有兩個不等的正根,于是,即有,,,顯然,即,A錯誤,BCD正確.故選:BCD三、填空題5.(2022新高考Ⅰ卷·15)若曲線有兩條過坐標(biāo)原點的切線,則a的取值范圍是.【答案】【分析】設(shè)出切點橫坐標(biāo),利用導(dǎo)數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點得到關(guān)于的方程,根據(jù)此方程應(yīng)有兩個不同的實數(shù)根,求得的取值范圍.【詳解】∵,∴,設(shè)切點為,則,切線斜率,切線方程為:,∵切線過原點,∴,整理得:,∵切線有兩條,∴,解得或,∴的取值范圍是,故答案為:6.(2022新高考Ⅱ卷·14)曲線過坐標(biāo)原點的兩條切線的方程為,.【答案】【分析】分和兩種情況,當(dāng)時設(shè)切點為,求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標(biāo)原點求出,即可求出切線方程,當(dāng)時同理可得;【詳解】[方法一]:化為分段函數(shù),分段求分和兩種情況,當(dāng)時設(shè)切點為,求出函數(shù)導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標(biāo)原點求出,即可求出切線方程,當(dāng)時同理可得;解:因為,當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標(biāo)原點,所以,解得,所以切線方程為,即;當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標(biāo)原點,所以,解得,所以切線方程為,即;故答案為:;[方法二]:根據(jù)函數(shù)的對稱性,數(shù)形結(jié)合當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標(biāo)原點,所以,解得,所以切線方程為,即;因為是偶函數(shù),圖象為:所以當(dāng)時的切線,只需找到關(guān)于y軸的對稱直線即可.[方法三]:因為,當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標(biāo)原點,所以,解得,所以切線方程為,即;當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標(biāo)原點,所以,解得,所以切線方程為,即;故答案為:;.四、解答題7.(2022新高考Ⅰ卷·22)已知函數(shù)和有相同的最小值.(1)求a;【答案】(1)(2)見解析【分析】(1)根據(jù)導(dǎo)數(shù)可得函數(shù)的單調(diào)性,從而可得相應(yīng)的最小值,根據(jù)最小值相等可求a.注意分類討論.【詳解】(1)的定義域為,而,若,則,此時無最小值,故.的定義域為,而.當(dāng)時,,故在上為減函數(shù),當(dāng)時,,故在上為增函數(shù),故.當(dāng)時,,故在上為減函數(shù),當(dāng)時,,故在上為增函數(shù),故.因為和有相同的最小值,故,整理得到,其中,設(shè),則,故為上的減函數(shù),而,故的唯一解為,故的解為.綜上,.8.(2023新高考Ⅰ卷·19)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時,.【答案】(1)答案見解析(2)證明見解析【分析】(1)先求導(dǎo),再分類討論與兩種情況,結(jié)合導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得解;(2)方法一:結(jié)合(1)中結(jié)論,將問題轉(zhuǎn)化為的恒成立問題,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得即可.方法二:構(gòu)造函數(shù),證得,從而得到,進而將問題轉(zhuǎn)化為的恒成立問題,由此得證.【詳解】(1)因為,定義域為,所以,當(dāng)時,由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時,令,解得,當(dāng)時,,則在上單調(diào)遞減;當(dāng)時,,則在上單調(diào)遞增;綜上:當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時,等號成立,因為,當(dāng)且僅當(dāng),即時,等號成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,恒成立,證畢.9.(2022新高考Ⅱ卷·22)已知函數(shù).(1)當(dāng)時,討論的單調(diào)性;【答案】(1)的減區(qū)間為,增區(qū)間為.【分析】(1)求出,討論其符號后可得的單調(diào)性.【詳解】(1)當(dāng)時,,則,當(dāng)時,,當(dāng)時,,故的減區(qū)間為,增區(qū)間為.10.(2023新高考Ⅱ卷·22)(1)證明:當(dāng)時,;【答案】(1)證明見詳解【分析】(1)分別構(gòu)建,,求導(dǎo),利用導(dǎo)數(shù)判斷原函數(shù)的單調(diào)性,進而可得結(jié)果;【詳解】(1)構(gòu)建,則對恒成立,則在上單調(diào)遞增,可得,所以;構(gòu)建,則,構(gòu)建,則對恒成立,則在上單調(diào)遞增,可得,即對恒成立,則在上單調(diào)遞增,可得,所以;綜上所述:.知識點總結(jié)一、導(dǎo)數(shù)的運算1、求導(dǎo)的基本公式基本初等函數(shù)導(dǎo)函數(shù)(為常數(shù))2、導(dǎo)數(shù)的四則運算法則(1)函數(shù)和差求導(dǎo)法則:;(2)函數(shù)積的求導(dǎo)法則:;(3)函數(shù)商的求導(dǎo)法則:,則.3、復(fù)合函數(shù)求導(dǎo)數(shù)復(fù)合函數(shù)的導(dǎo)數(shù)和函數(shù),的導(dǎo)數(shù)間關(guān)系為:4、切線問題(1)在點的切線方程切線方程的計算:函數(shù)在點處的切線方程為,抓住關(guān)鍵.(2)過點的切線方程設(shè)切點為,則斜率,過切點的切線方程為:,又因為切線方程過點,所以然后解出的值.(有幾個值,就有幾條切線)注意:在做此類題目時要分清題目提供的點在曲線上還是在曲線外.二、單調(diào)性基礎(chǔ)問題1、函數(shù)的單調(diào)性函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).2、已知函數(shù)的單調(diào)性問題=1\*GB3①若在某個區(qū)間上單調(diào)遞增,則在該區(qū)間上有恒成立(但不恒等于0);反之,要滿足,才能得出在某個區(qū)間上單調(diào)遞增;=2\*GB3②若在某個區(qū)間上單調(diào)遞減,則在該區(qū)間上有恒成立(但不恒等于0);反之,要滿足,才能得出在某個區(qū)間上單調(diào)遞減.三、討論單調(diào)區(qū)間問題類型一:不含參數(shù)單調(diào)性討論(1)求導(dǎo)化簡定義域(化簡應(yīng)先通分,盡可能因式分解;定義域需要注意是否是連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導(dǎo)函數(shù)中未知正負(fù),需要單獨討論的部分.定號部分:已知恒正或恒負(fù),無需單獨討論的部分);(3)求根作圖得結(jié)論(如能直接求出導(dǎo)函數(shù)等于0的根,并能做出導(dǎo)函數(shù)與x軸位置關(guān)系圖,則導(dǎo)函數(shù)正負(fù)區(qū)間段已知,可直接得出結(jié)論);(4)未得結(jié)論斷正負(fù)(若不能通過第三步直接得出結(jié)論,則先觀察導(dǎo)函數(shù)整體的正負(fù));(5)正負(fù)未知看零點(若導(dǎo)函數(shù)正負(fù)難判斷,則觀察導(dǎo)函數(shù)零點);(6)一階復(fù)雜求二階(找到零點后仍難確定正負(fù)區(qū)間段,或一階導(dǎo)函數(shù)無法觀察出零點,則求二階導(dǎo));求二階導(dǎo)往往需要構(gòu)造新函數(shù),令一階導(dǎo)函數(shù)或一階導(dǎo)函數(shù)中變號部分為新函數(shù),對新函數(shù)再求導(dǎo).(7)借助二階定區(qū)間(通過二階導(dǎo)正負(fù)判斷一階導(dǎo)函數(shù)的單調(diào)性,進而判斷一階導(dǎo)函數(shù)正負(fù)區(qū)間段);類型二:含參數(shù)單調(diào)性討論(1)求導(dǎo)化簡定義域(化簡應(yīng)先通分,然后能因式分解要進行因式分解,定義域需要注意是否是一個連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導(dǎo)函數(shù)中未知正負(fù),需要單獨討論的部分.定號部分:已知恒正或恒負(fù),無需單獨討論的部分);(3)恒正恒負(fù)先討論(變號部分因為參數(shù)的取值恒正恒負(fù));然后再求有效根;(4)根的分布來定參(此處需要從兩方面考慮:根是否在定義域內(nèi)和多根之間的大小關(guān)系);(5)導(dǎo)數(shù)圖像定區(qū)間;四、極值與最值1、函數(shù)的極值函數(shù)在點附近有定義,如果對附近的所有點都有,則稱是函數(shù)的一個極大值,記作.如果對附近的所有點都有,則稱是函數(shù)的一個極小值,記作.極大值與極小值統(tǒng)稱為極值,稱為極值點.求可導(dǎo)函數(shù)極值的一般步驟(1)先確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)求方程的根;(4)檢驗在方程的根的左右兩側(cè)的符號,如果在根的左側(cè)附近為正,在右側(cè)附近為負(fù),那么函數(shù)在這個根處取得極大值;如果在根的左側(cè)附近為負(fù),在右側(cè)附近為正,那么函數(shù)在這個根處取得極小值.注:①可導(dǎo)函數(shù)在點處取得極值的充要條件是:是導(dǎo)函數(shù)的變號零點,即,且在左側(cè)與右側(cè),的符號導(dǎo)號.②是為極值點的既不充分也不必要條件,如,,但不是極值點.另外,極值點也可以是不可導(dǎo)的,如函數(shù),在極小值點是不可導(dǎo)的,于是有如下結(jié)論:為可導(dǎo)函數(shù)的極值點;但為的極值點.2、函數(shù)的最值函數(shù)最大值為極大值與靠近極小值的端點之間的最大者;函數(shù)最小值為極小值與靠近極大值的端點之間的最小者.導(dǎo)函數(shù)為(1)當(dāng)時,最大值是與中的最大者;最小值是與中的最小者.(2)當(dāng)時,最大值是與中的最大者;最小值是與中的最小者.一般地,設(shè)是定義在上的函數(shù),在內(nèi)有導(dǎo)數(shù),求函數(shù)在上的最大值與最小值可分為兩步進行:(1)求在內(nèi)的極值(極大值或極小值);(2)將的各極值與和比較,其中最大的一個為最大值,最小的一個為最小值.【導(dǎo)數(shù)及其應(yīng)用常用結(jié)論】1、恒成立和有解問題(1)若函數(shù)在區(qū)間D上存在最小值和最大值,則不等式在區(qū)間D上恒成立;不等式在區(qū)間D上恒成立;不等式在區(qū)間D上恒成立;不等式在區(qū)間D上恒成立;(2)若函數(shù)在區(qū)間D上不存在最大(?。┲?,且值域為,則不等式在區(qū)間D上恒成立.不等式在區(qū)間D上恒成立.(3)若函數(shù)在區(qū)間D上存在最小值和最大值,即,則對不等式有解問題有以下結(jié)論:不等式在區(qū)間D上有解;不等式在區(qū)間D上有解;不等式在區(qū)間D上有解;不等式在區(qū)間D上有解;(4)若函數(shù)在區(qū)間D上不存在最大(?。┲?,如值域為,則對不等式有解問題有以下結(jié)論:不等式在區(qū)間D上有解不等式在區(qū)間D上有解(5)對于任意的,總存在,使得;(6)對于任意的,總存在,使得;(7)若存在,對于任意的,使得;(8)若存在,對于任意的,使得;(9)對于任意的,使得;(10)對于任意的,使得;(11)若存在,總存在,使得(12)若存在,總存在,使得.名校模擬練一、單選題1.(2024·河北保定·三模)曲線在點處的切線與兩坐標(biāo)軸所圍成的三角形的面積為(

)A. B. C. D.【答案】C【分析】根據(jù)導(dǎo)數(shù)的幾何意義求得曲線的切線方程,結(jié)合三角形面積公式計算即可.【詳解】由,得,則,,所以曲線在點處的切線方程為.令,得,令,得,故該切線與兩坐標(biāo)軸所圍成的三角形的面積為.故選:C2.(2024·陜西西安·三模)已知函數(shù)則在點處的切線方程為(

)A. B. C. D.【答案】B【分析】根據(jù)分段函數(shù)結(jié)合導(dǎo)函數(shù)求出,再根據(jù)點斜式得出直線方程.【詳解】當(dāng)時,,當(dāng)時,,則,所以,.則所求的切線方程為,即.故選:B.3.(2024·河北保定·三模)已知二次函數(shù)(且)的圖象與曲線交于點P,與x軸交于點A(異于點O),若曲線在點P處的切線為l,且l與AP垂直,則a的值為(

)A. B. C. D.【答案】B【分析】利用導(dǎo)數(shù)求解直線l的斜率,即可根據(jù)垂直關(guān)系得,結(jié)合,即可求解.【詳解】易知,設(shè),聯(lián)立與可得,故,由得,所以,,因為,所以,即,又,所以.故選:B.4.(2024·貴州六盤水·三模)已知曲線的一條切線方程為,則實數(shù)()A. B. C.1 D.2【答案】D【分析】根據(jù)切線的斜率的幾何意義可知,求出切點,代入切線即可求出.【詳解】設(shè)切點為因為切線,所以,解得(舍去)代入曲線得,所以切點為代入切線方程可得,解得.故選:D.5.(2024·湖南長沙·二模)已知,,直線與曲線相切,則的最小值是(

)A.4 B.3 C.2 D.1【答案】D【分析】利用已知條件求出切點的橫坐標(biāo),從而得到,利用基本不等式即可求解.【詳解】由于直線與曲線相切,設(shè)切點為,且,所以,則切點的橫坐標(biāo),則,即.又,所以,即,當(dāng)且僅當(dāng)時取等號,所以的最小值為1.故選:D6.(2024·貴州黔東南·二模)已知正實數(shù),滿足,則的最大值為(

)A.0 B. C.1 D.【答案】A【分析】根據(jù)等式關(guān)系構(gòu)造函數(shù),由其單調(diào)性可得,于是結(jié)合基本不等式可得的最大值.【詳解】由題,構(gòu)造函數(shù),則,顯然在上單調(diào)遞增,所以,即,所以,當(dāng)且僅當(dāng),時等號成立.所以的最大值為0.故選:A.【點睛】關(guān)鍵點點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構(gòu)造一個適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.7.(2024·福建泉州·二模)在等比數(shù)列中,是函數(shù)的兩個極值點,若,則t的值為(

)A. B. C.4 D.5【答案】C【分析】首先求函數(shù)的導(dǎo)數(shù),利用韋達定理求得,并根據(jù)等比數(shù)列的性質(zhì),代入條件等式,即可求解.【詳解】,所以是方程的兩個實數(shù)根,則,,,根據(jù)等比數(shù)列的性質(zhì),,且所以,即,得.故選:C8.(2024·天津和平·三模)已知函數(shù)(,且),,若函數(shù)在區(qū)間上恰有3個極大值點,則的取值范圍為(

)A. B.. C. D.【答案】D【分析】利用三角恒等變換化簡得到,從而得到,根據(jù)函數(shù)極大值點的個數(shù)得到方程,求出答案.【詳解】,,,函數(shù)在區(qū)間上恰有3個極大值點,故,解得.故選:D9.(2024·遼寧·二模)已知正實數(shù),記,則的最小值為(

)A. B.2 C.1 D.【答案】A【分析】由已知得出,結(jié)合得出,根據(jù)基本不等式即可求解.【詳解】由得,,所以,即,因為,所以,因為,當(dāng)且僅當(dāng)時等號成立,所以,,當(dāng)且僅當(dāng),即時,等號成立,故選:A.【點睛】關(guān)鍵點睛:當(dāng)時,有;即且,兩式相乘,進而得出最小值.10.(2024·新疆喀什·三模)已知,,,則(

)A. B. C. D.【答案】C【分析】由正弦函數(shù)、對數(shù)函數(shù)性質(zhì)易得,構(gòu)造,利用導(dǎo)數(shù)判斷單調(diào)性,再判斷大小關(guān)系即可得,即可得結(jié)果.【詳解】因為在內(nèi)單調(diào)遞增,則,即,又因為在內(nèi)單調(diào)遞增,則,,可得;令,則,,構(gòu)建,則,可知在上遞減,則,即;綜上所述:.故選:C.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵是根據(jù)構(gòu)建,利用導(dǎo)數(shù)判斷其單調(diào)性,進而可得.11.(2024·安徽合肥·三模)已知函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若滿足:,,則下列判斷正確的是(

)A. B.C. D.【答案】C【分析】根據(jù)題意令,利用導(dǎo)數(shù)及題干所給條件求得的單調(diào)性,利用函數(shù)的對稱性,可得,對其進行比較即可判斷各選項.【詳解】令,則,函數(shù)滿足,當(dāng)時在上單調(diào)遞增,當(dāng)時在上單調(diào)遞減,又由,即函數(shù)的圖象關(guān)于對稱,從而,對于A,,,,A錯誤;對于B,,,,B錯誤;對于C,,,,C正確;對于D,,,,D錯誤.故選:C【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是構(gòu)造函數(shù),利用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,結(jié)合函數(shù)的對稱性即可.二、多選題12.(2024·河北衡水·三模)已知函數(shù),是函數(shù)的一個極值點,則下列說法正確的是(

)A. B.函數(shù)在區(qū)間上單調(diào)遞減C.過點能作兩條不同直線與相切 D.函數(shù)有5個零點【答案】AD【分析】求得,根據(jù),可判定A正確;由,利用導(dǎo)數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,可判定B錯誤;設(shè)過點且與函數(shù)相切的切點為,求得切線方程,列出方程求得的值,可判定C錯誤;令,作出函數(shù)的圖象,得到,進而的函數(shù)零點的個數(shù),可判定以D正確.【詳解】對于A中,由函數(shù),可得,因為是函數(shù)的一個極值點,可得,解得,經(jīng)檢驗適合題意,所以A正確;對于B中,由,令,解得或,當(dāng)時,;當(dāng)時,;當(dāng)時,,故在區(qū)間上遞增,在區(qū)間上遞減,在區(qū)間上遞增,所以B錯誤;對于C中,設(shè)過點且與函數(shù)相切的切點為,則該切線方程為,由于切點滿足直線方程,則,整理得,解得,所以只能作一條切線,所以C錯誤;對于D中,令,則的根有三個,如圖所示,,所以方程有3個不同根,方程和均有1個根,故有5個零點,所以D正確.故選:AD.13.(2024·重慶·三模)若函數(shù)既有極小值又有極大值,則()A. B. C. D.【答案】ABC【分析】根據(jù)題意,求得,轉(zhuǎn)化為在上有兩個不同的實數(shù)根,根據(jù)二次函數(shù)的性質(zhì),列出不等式組,結(jié)合選項,即可求解.【詳解】由函數(shù),可得,因為既有極小值又有極大值,可得方程在上有兩個不同的實數(shù)根,則滿足,可得,所以,,,例如:時,滿足上式,此時不成立.故選:ABC.14.(2024·山西太原·三模)已知是函數(shù)的極值點,若,則下列結(jié)論正確的是(

)A.的對稱中心為 B.C. D.【答案】AC【分析】利用,可判斷A;令,解得,代入可判斷B;利用導(dǎo)數(shù)判斷出的單調(diào)性并求出極值點,結(jié)合圖像分情況由解出,可得可判斷C;利用C選項,若,,得出可判斷D.【詳解】對于A,因為,所以的對稱中心為,故A

正確;對于B,,令,解得,當(dāng)時,,因為,所以,可得,當(dāng)時,,因為,所以,可得,故B錯誤;對于C,令,解得,當(dāng)或時,,是單調(diào)遞增函數(shù),當(dāng)時,,是單調(diào)遞減函數(shù),所以在時有極大值,在時有極小值,如下圖,當(dāng)時,若,則,可得,即,解得,所以;當(dāng)時,如下圖,若,則,可得,即,解得,所以;綜上所述,,故C正確;對于D,由C選項可知,若,,所以,故D錯誤.故選:AC.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值點.15.(2024·河北·三模)已知函數(shù)及其導(dǎo)函數(shù)的定義域均為,記,若為偶函數(shù),為奇函數(shù),則下列結(jié)論正確的是(

)A.的圖象關(guān)于直線對稱. B.的圖象關(guān)于點對稱.C. D.【答案】BD【分析】對于A,直接得到即可判斷;對于B,由為偶函數(shù),所以,求導(dǎo)可得即可判斷;對于D,求出的周期為,再根據(jù)即可判斷;對于C,由題意舉出反例即可淘汰.【詳解】對于A,因為為奇函數(shù),所以,即,所以的圖象關(guān)于中心對稱,故A錯誤;對于B,由為偶函數(shù),所以,所以,即,即,則,所以的圖象關(guān)于中心對稱,故B正確;對于D,由,,知,又,,所以,所以,即,所以為周期是的函數(shù),即,故D正確.對于C,由題意及上述分析知是以為周期的函數(shù),且,不妨設(shè),所以,周期均為且,所以,所以C錯誤;故選:BD.【點睛】關(guān)鍵點點睛:對于選項C,通過舉反例的形式淘汰答案,不妨設(shè),所以,所以周期為,且,所以.三、填空題16.(2024·上?!と#┰O(shè)曲線和曲線在它們的公共點處有相同的切線,則的值為.【答案】2【分析】根據(jù)兩曲線在有公切線,則是公共點,該點處的導(dǎo)數(shù)值相同,列出方程求出的值,則答案可求.【詳解】由已知得,解得,又,所以得,所以,所以.故答案為:217.(2024·上?!と#┤艉瘮?shù)在上存在最小值,則實數(shù)a的取值范圍是.【答案】【分析】根據(jù)題意,函數(shù)的極小值點在內(nèi),再結(jié)合即可求出實數(shù)的取值范圍.【詳解】因為,所以,令得,,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,所以當(dāng)時,有極小值,因為函數(shù)在上存在最小值,又,所以,解得,所以實數(shù)a的取值范圍是.故答案為:.18.(2024·上海閔行·三模)早在西元前6世紀(jì),畢達哥拉斯學(xué)派已經(jīng)知道算術(shù)中項,幾何中項以及調(diào)和中項,畢達哥拉斯學(xué)派哲學(xué)家阿契塔在《論音樂》中定義了上述三類中項,其中算術(shù)中項,幾何中項的定義與今天大

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論