![2024年預(yù)測:人工智能與網(wǎng)絡(luò)安全-將顛覆變?yōu)闄C(jī)遇_第1頁](http://file4.renrendoc.com/view15/M01/36/03/wKhkGWeoDJ-AXFRmAADy4U0eaO8706.jpg)
![2024年預(yù)測:人工智能與網(wǎng)絡(luò)安全-將顛覆變?yōu)闄C(jī)遇_第2頁](http://file4.renrendoc.com/view15/M01/36/03/wKhkGWeoDJ-AXFRmAADy4U0eaO87062.jpg)
![2024年預(yù)測:人工智能與網(wǎng)絡(luò)安全-將顛覆變?yōu)闄C(jī)遇_第3頁](http://file4.renrendoc.com/view15/M01/36/03/wKhkGWeoDJ-AXFRmAADy4U0eaO87063.jpg)
![2024年預(yù)測:人工智能與網(wǎng)絡(luò)安全-將顛覆變?yōu)闄C(jī)遇_第4頁](http://file4.renrendoc.com/view15/M01/36/03/wKhkGWeoDJ-AXFRmAADy4U0eaO87064.jpg)
![2024年預(yù)測:人工智能與網(wǎng)絡(luò)安全-將顛覆變?yōu)闄C(jī)遇_第5頁](http://file4.renrendoc.com/view15/M01/36/03/wKhkGWeoDJ-AXFRmAADy4U0eaO87065.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
GartnerResearch
Predicts2024:AI
&Cybersecurity—TurningDisruptionIntoanOpportunity
JeremyD’Hoinne,AvivahLitan,NaderHenein,MarkHorvath,AkifKhan,RobertsonPimentel,BartWillem-sen,DennisXu,WilliamDupre
4December2023
Gartner
Predicts2024:AI&Cybersecurity—TurningDisruptionIntoanOpportunity
Published4December2023-IDG00800663-27minread
ByAnalyst(s):JeremyD'Hoinne,AvivahLitan,NaderHenein,MarkHorvath,AkifKhan,RobertsonPimentel,BartWillemsen,DennisXu,WilliamDupre
Initiatives:CyberRisk;MeetDailyCybersecurityNeeds
GartnerpredictsthatAIwilldurablydisruptcybersecurityin
positiveways,butalsocreatemanyshort-termdisillusions.
Securityandriskmanagementleadersneedtoacceptthat2023wasonlythestarterforgenerativeAI,andprepareforits
evolutions.
Overview
KeyFindings
■GenerativeAI(GenAI)isthelatesttechnologyinalonglineofproclaimeddisruptivetechnologiespromisingtoful?lltheongoingdesirefororganizationstodrasticallyincreaseproductivitymetricsforallteamsviaautomationoftasks.
■Today,mostGenAIfunctionsbuiltintosecurityproductsarefocusedonadding
naturallanguageinterfacestoexistingproductstoimproveef?ciencyandusability,butpromisesoffullautomationstarttoappear.Pastattemptstofullyautomate
complexsecurityactivities,includingusingmachinelearningtechniques,haverarelybeenentirelysuccessfulandcanbeawastefuldistractiontoday,andwithshort-termdisillusions.
■GenAIisatpeakhype,drivingveryaggressivepredictionsbasedonthestateofthetechnologytoday.Thisleadstounrealisticdisruptionclaims,butalsoignoresnextstepsinGenAIevolution,suchasmultimodalmodelsandcompositeAI.
■TheinitialforaysbycybersecurityvendorsintogenerativeAIofferonlyalimited
glimpseofthetechnology'spromiseandmightnotbethebestindicationofwhatthefuturecouldbe.
Gartner,Inc.|G00800663Page1of23
Recommendations
Securityandriskmanagement(SRM)leadersinchargeofdevelopingcybersecurityroadmapshould:
■ConstructamultiyearapproachforprogressivelyintegratingGenAIfeaturesand
productswhentheyaugmentsecuritywork?ows.Startwithapplicationsecurityandsecurityoperations.
■Evaluateef?ciencygainsintandemwiththecostofGenAIimplementations,and
re?neyourdetectionandproductivitymetricstoaccountfornewGenAIcybersecurityfeatures.
■PrioritizeinvestmentsinAIaugmentationoftheworkforce,notjusttaskautomation.Prepareforshort-termincreasedspendandlong-termskillrequirementschanges
duetoGenAI.MonitorpotentialshiftinattacksuccessduetoGenAI.
■Accountforpotentialprivacychallengesandbalanceexpectedbene?ts,withrisksassociatedwithcumulativecostinthevaluationoflarge-scaleGenAIadoptioninsecurity.
StrategicPlanningAssumptions
By2028,multiagentAIinthreatdetectionandincidentresponsewillrisefrom5%to70%ofAIimplementationstoprimarilyaugment,notreplacestaff.
Through2025,generativeAIwillcauseaspikeofcybersecurityresourcesrequiredto
secureit,causingmorethana15%incrementalspendonapplicationanddatasecurity.
By2026,40%ofdevelopmentorganizationswillusetheAI-basedautoremediationofinsecurecodefromASTvendorsasadefault,upfromlessthan5%in2023.
By2026,attacksusingAI-generateddeepfakesonfacebiometricswillmeanthat30%ofenterpriseswillnolongerconsidersuchidentityveri?cationandauthenticationsolutionstobereliableinisolation.
By2028,theadoptionofgenerativeaugmentswillcollapsetheskillsgap,removingtheneedforspecializededucationfrom50%ofentry-levelcybersecuritypositions.
Gartner,Inc.|G00800663Page2of23
Analysis
WhatYouNeedtoKnow
PredictionsarestatementsofGartner’spositionsandactionableadviceaboutthefuture.ThisresearchhighlightsGartnerPredictsrelevantforsecurityandriskmanagement
leaderswhohavetonavigateaggressiveclaimsthatGenAIisdisruptingcybersecurity.
Pastexperiencesleadtoskepticismgivenprevious“AIwashing,”whichcausedexpensiveinvestmentsthatdidn’tdeliverexpectedresults.
In4WaysGenerativeAIWillImpactCISOsandTheirTeams,Gartnergivesrecommendationsonareasofimmediatefocusforsecurityleaders:
■ManagetheconsumptionofhostedandembeddedGenAIapplications.
■UpdateapplicationsecuritypracticestoAIapplications,usingAItrust,riskandsecuritymanagement(AITRiSM)technologies.
■Assessthe?rstwaveofGenAIannouncementsfromcybersecurityproviders,andputaplantointegratenewfeaturesandproductswhentheyaremoremature.
■AcknowledgethatmaliciousactorswillalsouseGenAIandbepreparedforunpredictablechangesinthethreatlandscape.
Excessivehypedamagesourperceptionoftimeandbalance,butroadmapplanningrequiresthatcybersecurityleadersfactorinallpossibilities,withoutastrongfactbasethatbalancescybersecurityrealitieswithGenAIhopesorpromises(seeFigure1).
Gartner,Inc.|G00800663Page3of23
Figure1:BalancingCybersecurityRealitywithGenAIHopes
Thecybersecurityindustryhaslongbeenobsessedwithfullyautomatedsolutions.ThehypesurroundingGenAIalreadyledtounrealisticpromises,potentiallydamagingthecredibilityoflonger-termimprovementscomingfromfuturefeaturesandproducts.
2023wastheyearofGenAIannouncements,2024shouldbetheyearofminimumviableproducts;2025mightbethefirstyearofGenAIintegrationinsecurityworkflowsdeliveringrealvalue.
AsstatedintheHypeCycleforGenerativeAI,2023,“Severalinnovationshavea?ve-to10-yearperiodtomainstreamadoption.”Thisisthecasefor“autonomousagents”and
Gartnerbelievesthatcybersecurityleadersfocusingonhumanaugmentationwillachievebetterresultsthanthosejumpingtooquicklyonsolutionspromisingfullautomation.
Intheshorterterm,we’llobserveexpansionsofcybersecurityusecasesfromexperimentsofmultimodalGenAI(i.e.,learningfrommorethantextcontent)andwillimproveour
abilitytomeasureproductivitygains(seeInnovationInsight:MultimodalAIExplained).
Gartner,Inc.|G00800663Page4of23
StrategicPlanningAssumptions
StrategicPlanningAssumption:By2028,multiagentAIinthreatdetectionandincident
responsewillrisefrom5%to70%ofAIimplementationstoprimarilyaugment,notreplacestaff.
Analysisby:JeremyD’Hoinne,DennisXuKeyFindings:
■Morethanathirdofthe?rstwaveofannouncementsonGenAIincybersecurityrelatetosecurityoperationactivities.Toutedcapabilitiesrangefrombasic
interactivehelppromptstonewdedicatedproductannouncementsaimedat
becomingtheprimaryinterfaceforincidentresponseandpostureassessments.
■Fullautomationofthreatdetection,alerttriageandincidentresponsesarethe“reachthemoon”objectivesofmanythreatdetection,investigationandresponse(TDIR)
initiatives.
■HistoryoftenrepeatsandGenAIsparksthesameoverly-optimistichopesforsecurityoperations,similartowhatunsupervisedmachinelearningdidforthreatdetection
morethan?veyearsago.
■Conversely,teamswithahighermaturitymightimprudentlydismissgenerativecybersecurityAI,basedontheearlyandimmatureimplementationsoflarge
languagemodels(LLMs)intheformof“SOCassistants”prompts.
Near-TermFlag:
Through2024,lessthanathirdofgenerativecybersecurityAIimplementationwillleadtosecurityoperationproductivityimprovementsforenterprises,generatingmorespend.
By2026,theemergenceofnewapproaches,suchas“actiontransformers,”combinedwithmorematureGenAItechniqueswilldrivesemiautonomousplatformsthatwillsigni?cantlyaugmenttasksexecutedbycybersecurityteams.
MarketImplications:
Buildingstrongsecurityoperationsisdif?cult,evenforlargerandwell-funded
organizations.Pickingtherightmixoftools,servicesandinternalstaffwillsufferif
cybersecurityteamsinvesttimeontoolsthatdon’tdelivertotheirpromiseofautomation.Gartner,Inc.|G00800663Page5of23
We'veobservedthispreviouslywhenimplementationsofunsupervisedmachinelearningforthreatdetectionpromisedtowipeoutfalsepositivesandenableautomatedresponse.Ittookyearsforthetoolstomature,andforsecurityoperationteamstotunethemand
narrowdownautomatedblockingtothefewusecaseswhereitworked.WithLLMstoday—andautonomousagents,multimodalandfoundationmodelsinthefuture—
organizationsfaceasimilarchallenge.EarlyclaimsofGenAIawesomenessdivert
expectationsfromincrementalimprovementsandteamaugmentationtolesslikelybigshiftsinautomation,skillrequirementsandstaffversustoolbalance.
Gartneranticipatesshort-termGenAIdisillusions,especiallyin
2024,whereexternalpressuretoincreasesecurityoperation
productivitywillcollidewithlowmaturityfeaturesandfragmentedworkflows.
Symptomsofill-preparedGenAIintegrationwillinclude:
■AbsenceofrelevantmetricstomeasureGenAIbene?ts,combinedwithpremiumpricesforGenAIadd-ons.
■Dif?cultiestointegrateAIassistantsinexistingcollaborationwork?owwithinthesecurityoperationteams,orwhenpartneringwithathird-partysecurityoperationprovider.
■Quicklygrowing“promptfatigue:”toomanytoolsofferinginteractiveinterfacetoqueryaboutthreatsandincidents.
Withtime,newAIapproaches—combinedwithothernon-AItechniqueswhererelevant—mightbringsecurityoperationsclosertoautonomousdecisionsforidenti?edusecases.EmergingAItechniquessupportingthispromiseinclude:
■Multiagentsystems(MAS):TypeofAIsystemscomposedofmultiple,independentbutinteractiveagents.
■Actiontransformers:Modelsthatlearnfromhumanactions.
■Autonomousagents:Self-promptingagentsthatcantakeactionsbasedonLLMsrecipes.
Gartner,Inc.|G00800663Page6of23
Althoughthemythoffullyautomatedresponseandself-healingorganizationsmight
nevertrulyturnintoreality,Gartnerbelievesthatthecombinationofothertechniqueswithmultiagentapproacheswillhaveabigimpactonsecurityoperationsandsecurityin
general.Deploymentsaimedatbothaugmentinghumantasksandaddingprecisionandspeedtohumaninvestigationswillbemoreeffectivethansingle-techniqueAIanalyticsdrivingfullyautonomousresponses,suchasautomatedcontainmentfortheforeseeablefuture.
Recommendations:
■NavigatethechaosofnewlyannouncedGenAIfeaturesinsecurityproductsby
introducingbusinessvalue-drivenAIevaluationframeworks,whichmeasureimpactontangiblemetricssuchasspeed,accuracyandproductivity.
■RunGenAIpilotsprimarilyforincidentresponseandexposuremanagementusecasesthatarenotrealtimeinnature.Setrealisticshort-termobjectives,suchasfalsepositivereductionoropportunitiestoextendstaffrecruitmenttoslightlylessspecializedpro?les.
■Protectthesecurityoperationteamasmuchaspossiblefrommandatesoriginatingoutsideofthesecurityteamtofullyautomateresponseandvulnerabilitytreatmentprocess.Thiswillhelpavoidresistancewhenyouneedtoimplementpromising
GenAItechniqueslater.
■Belucidaboutsecurityproviders’strategytouseGenAIasaclaimeddifferentiatortopromotelargeplatformsleadingtovendorlock-in.
■Don’tneglectproviderevaluationrequirementstoaddressprivacy,copyright,traceabilityandexplainabilitychallenges.
RelatedResearch:
4WaysGenerativeAIWillImpactCISOsandTheirTeamsHypeCycleforArti?cialIntelligence,2023
HypeCycleforGenerativeAI,2023
Busting4MythstoUnlockMoreCybersecurityValue
Gartner,Inc.|G00800663Page7of23
StrategicPlanningAssumption:Through2025,generativeAIwillcauseaspikeof
cybersecurityresourcesrequiredtosecureit,causingmorethana15%incrementalspendonapplicationanddatasecurity.
Analysisby:AvivahLitan,JeremyD’HoinneKeyFindings:
■GartnerresearchshowsthatmostenterpriseshavenotyetformalizedacceptableusepoliciesforGenAI,sosecurityandriskmanagersdonotyethaveaframeworkforinstitutingtechnicalcontrols.1
■Integratinglargelanguagemodels(LLMs)andothertypesofmodels,suchas
foundationmodelsinenterpriseapplications,bringnewrisksinthreecategories:contentanomalies,dataprotectionandAIapplicationsecurity.
■Almost90%ofenterprisesarestillresearchingorpilotingGenAI,andmostofthosehaveyettoputAITRiSM(trustriskandsecuritymanagement)technicalcontrolsorpoliciesinplace.
■VendorshostingGenAImodelsdonotalwaysprovideacompletesetofcontrolsthatmitigatetheserisks.Instead,usersneedtoacquiresolutionsthataugmenthostingvendors’limitedcontrols.
■ITleadersmustrelyonhostingLLMvendorswithprotectionoftheirdata,withouttheabilitytoverifytheirsecurityandprivacycontrols.
MarketImplications:
Theuseofthird-partyhostedLLMandGenAImodelsunlocksmanybene?ts,butusers
alsomustcontendwithnewuniquerisks,requiringnewsecuritypracticesinthreeprimarycategories:
Gartner,Inc.|G00800663Page8of23
■Contentanomalydetection
■Unacceptableormalicioususe
■Unmanagedenterprisecontenttransmittedthroughpromptsorothermethods,resultingincompromiseofcon?dentialdatainputs
■Hallucinationsorinaccurate,illegal,copyright-infringingandotherwise
unwantedorunintendedoutputsthatcompromiseenterprisedecisionmakingorcanleadtobranddamage
■Dataprotection
■Dataleakage,integrityandcon?dentialitycompromisesofbothcontentanduserdatainhostedvendorenvironment
■Inabilitytogovernprivacyanddataprotectionpoliciesinexternallyhostedenvironments,orevencontractserviceprovidersasdataprocessors
■Dif?cultyconductingprivacyimpactassessmentsandcomplyingwithvariousregionalregulations,duetotheblackboxnatureofthethird-partymodelsandthemostlyabsentpossibilitytoof?ciallycontractthesemodelprovidersas
dataprocessors,followingprivacylegislativerequirements
■AIapplicationsecurity
■Adversarialpromptingattacks,includingbusinesslogicabusesanddirectandindirectpromptinjections
■Vectordatabaseattacks
■Hackeraccesstomodelstatesandparameters
Ourrecentsurveyofover700webinarattendeesonwhatGenAIriskstheyaremost
concernedaboutvalidatedtheseriskcategories—andhighlightedthatprivacyanddatalossarethetoprisksfromITleaders.1
TheserisksareexacerbatedwhenusingexternallyhostedLLMandotherGenAImodels,asenterpriseslackcapabilitiestodirectlycontroltheirapplicationprocessesanddatahandlingandstorage.However,therisksstillexistinon-premisesmodelshostedand
directlycontrolledbytheenterprise—especiallywhensecurityandriskcontrolsarelacking.
Gartner,Inc.|G00800663Page9of23
ThesethreecategoriesofrisksconfrontusersduringruntimeofAIapplicationsand
models.Figure2showshowthesethreerisksaffectAImodeldevelopmentand
deployment,theAImodelatruntime,plustheeffectfromAIrisksintheITsupplychain.
Thisincludestrainingdata,third-partymodels,codeandlibraries,andpromptandmodelintegrations.
Thesenewattacksurfaceswilldriveenterprisesecuritydepartmentstospendtimeand
moneyimplementingGenAIsecurityandriskmanagementcontrols,suchthatapplicationanddatasecurityspendingwillincreaseatleast15%through2025.
Figure2:GenerativeAIAttackSurfacesAcrosstheAILifeCycle
Gartner,Inc.|G00800663Page10of23
Gartnerexpectsthatmanyenterpriseswillinitiallyacquiresolutionsthatmitigate
input/outputrisksthroughanomalydetectionorsecureAIapplicationstogainvisibilityintoenterpriseuseofGenAIapplicationsandmodels.Thisincludesuseofoff-the-shelfapplications,suchasChatGPTorinteractionsthroughotherintegrationpointslikeplug-ins,promptsorAPIs.GettingtheirarmsaroundenterpriseinteractionswithGenAIisthe?rstpriorityfororganizations,andtheseproductscanprovideagoodmapofthose
interactions.Oncethemapisestablished,corefunctionsofmitigatingrisksandsecuritythreatscanbegraduallydeployed.Thisallhasmajorimplicationsonsecuritystaf?ngandbudgets;henceourpredictionthatsecuritybudgetswillincrease.
Recommendations:
■OrganizewithinandacrossyourenterprisetomanagenewGenAIrisksandsecuritythreats.Onceorganized,establishacceptableGenAIusepoliciesforyourenterprise,andenforcethemonacontinualbasisinpartusingAITRiSMtechnology.
■SetupproofsofconcepttotestemergingAITRiSMproducts,specializedinGenAIinthethreenewriskandsecuritycategoriestoaugmentyoursecuritycontrols,and
applythemtoproductionapplicationsoncetheyperformasrequired.
■Usecontentanomalydetectionproductsthatmitigateinputandoutputrisksto
enforceacceptableusepolicy,andpreventunwantedorotherwiseillegitimatemodelcompletionsandresponsesfromcompromisingyourorganization’sdecision
making,safetyandsecurity.
■PerformuserawarenesstrainingtoreminduserstoalwaysvalidatetheoutputofGenAIproductsforaccuracybeforeincorporatingthemintobusinesswork?ow.
■EvaluatetheuseofAIapplicationsecurityproductstoprotectyourorganization
fromhackerswhoexploitnewGenAIthreatvectorstodamageyourorganizationanditsassets.
■Continuetouseknownsecuritycontrolstoprotectsensitiveinformation,applicationstacksandassets,butrecognizetheydon’tmitigaterisksuniquetoLLMs,suchasinaccurate,in?ammatoryorcopyrightedoutputsinresponses.
RelatedResearch:
4WaysGenerativeAIWillImpactCISOsandTheirTeams
InnovationGuideforGenerativeAIinTrust,RiskandSecurityManagement
Gartner,Inc.|G00800663Page11of23
GenerativeAIPolicyTemplate
MicrosoftAzureOpenAIvs.OpenAI:ComparingGenAITrust,RiskandSecurity
QuickAnswer:HowtoMakeMicrosoft365CopilotEnterprise-ReadyFromaSecurityandRiskPerspective
StrategicPlanningAssumption:By2026,40%ofdevelopmentorganizationswillusetheAI-basedauto-remediationofinsecurecodefromASTvendorsasadefault,upfromlessthan5%in2023.
Analysisby:MarkHorvathKeyFindings:
■Although80%ofvendorsofferingApplicationSecurityTesting(AST)havesome
formofsuggesting?xestocodebasedonsecurityproblems,(autoremediation),lessthan5%ofdevelopmentorganizationsuseit—inpartbecausethesolutionsit
offersaregenerallyexamples,ratherthanactualcode?xes.
■Developerscomplainthatautoremediationsuggestedbycodesecuritytools(ASTtools)oftenhaveadversesideeffectsonotheraspectsoftheircode,like
performanceandreliability.BecausemostdevelopershaveKPIsaroundthesecodeaspects—andlessstringentonesaroundsecurity—theyviewthesesuggestionsnegatively.
■Developerscanfeeloverloadedbythenumberofplug-instotheirdeveloper
environment—eachofferingadviceonaspeci?cparameter(e.g.,codequality
assessments,performanceandoptimizationsuggestions,etc.).AnynewadditionstotheIntegratedDevelopmentEnvironment(IDE)willneedtosynthesize
suggestionsbasedontheinputofmorethanoneautocorrectiontool.
Near-TermFlag:WhilemanyAI-basedsecurecodeassistantsareplannedorarein
development,theiradoptionbyreal-worldproductionteamsin2024,asopposedtopilotsorproofsofconcept(POCs),willbealeadingindicatorthattheyofferanadvantageoverexistingsystems.
MarketImplications:
Gartner,Inc.|G00800663Page12of23
Currently,theapplicationsecuritytestingmarketiscenteredaroundahandfulofcore
toolsusedfordeterminingelementsofcodesecurityrisk(e.g.,SAST,DAST,IAST,SCA,IaC,etc.).Althoughtheyinterfacewithdevelopersonadailybasis,theyareprimarilysecuritytoolsandweredesignedtobeusedby,andfor,securityprofessionalsworkingwith
developers.Theyareoftenheavyintermsoftechnicalsecurityjargonandassumethatdevelopershaveanunderstandingofthedata,andareabletoactionittoreducesecurity
risk.However,thereisoftenaconsiderablegapbetweenthesecuritytrainingthatdevelopersreceive,andreal-worldcodesecurityissuesthatoftendon’tlookliketheexamplestheyaretaught.
RemediationguidancefromstandardASTtoolsisusuallyintheformofautocorrection,whichworksinwayssimilartoaspellchecker(e.g.,isthislineformattedcorrectly)?
Guidancetothedeveloversisusuallyspeci?conlytosecurity,andonlytothelineorlinesinquestion.Itfailstoprovideamorecomprehensiveanalysisofdifferentaspectsofthecodeinalargercontext.Thisresultsinfairlygenericadvice,usuallyre?ectingtheOWASPtop10asthebasisofrepair.
Largelanguagemodels(LLMs)havetheadvantagethattheyarenotonlyabletomore
easilydealwithmultiplecodemetricslikesecurity,qualityandreliability,theyarevery
?exibleinthewaytheycanpresentthedataandsuggestionstodevelopers.LLMshavethepromiseofbeingabletoconvertsecurityjargonintoaneasiertounderstandformat,leadingtoabetterunderstandingoftheissueandamoreeffective?x.Thecurrent
generationofcodesecurityAIsofferadeveloperachoiceofseveraldifferentsuggestionsforaddressingvulnerabilities,puttingthedeveloperinchargeofpickingthetypeof
remediationthatbest?tsintotheapplication,thuspreservingthe“ownyourcode”philosophy.Thishasseveraladvantages:
■AIsandpeopleoftenworkbettertogetherthaneitheronealone.TheAIassistant
offersabroader(andpotentiallydeeper)viewofavulnerabilities’securityposture,whilethehumanunderstandstheapplication’scontext,goalsandwork?ows.TheAIassistantallowsabetterselectionofpossibleremediations,whilekeepingthe
application’sfunctioninmind.
■Bypresentingmultipleoptionstothedevelopers,theycanmoreeasilyrecognizeand?lteroutmisidenti?cations/hallucinationsfromtheAIassistant.
Gartner,Inc.|G00800663Page13of23
■NoneoftheautoremediationoptionsavailablefromASTtoolseffectivelyinclude
parameterslikeperformance,codequality,reliabilityetc.,whicharebothimportanttodevelopmentteamsandwell-correlatedwithsecurity?ndings.NewAI-basedcode
assistantscanoptimizeseveralvariablesbeyondjustsecuritytogivedevelopersmoremotivationinlinewiththeirdevelopmentKPIs.
Recommendations:
■MostenterprisesshouldnotusegenericLLMslikeChatGPTforcodegeneration,
codesecurityscanningorsecurecodereview,duetothehighererrorratesoftoolsnotspeci?ctosecurity.Instead,relyontoolsthatofferenterprisegradesecurityandgovernancecontrolsforassistingdeveloperswithtechnicaltaskslikesecurity.
■PilotnomorethantwoorthreedifferentAIsecuritycodeassistantstocompareandcontrasttheircapabilities.Thoughproductsarerecentlybecomingcommercially
available,themarketstillhasalongwaytogobeforethesearecommontools.Thecurrentgenerationhasstrengthsandweaknessesindifferentareas,sohave
developmentteamstestthemouttodeterminethemosteffectiveonesforyourorganization.
■Maintainingtheexistingdeveloperexperienceiscriticaltothesuccessfuladoptionofanydeveloperfocusedtools.Changesinwork?ow,experienceortestingworksagainstthe“musclememory”ofdevelopersandgeneratesfriction,whichwill
frustratedeveloperswhowillthenavoidusingthetools.
■RememberthatthesetoolsuseanLLM,whichwillneedperiodicretraining.Whenchoosingavendor,askspeci?callyaboutprivacy,dataretentionandretraining
detailstoprotectyourIP.Askaboutindemni?cationaroundIPloss,licensingissueswithsomecodeoraccidentallyre-usinganothercompany’sIP.
■AICodingAssistantsarerapidlybecomingapopularwayfordeveloperstowritebettercodeatafasterrate.BesuretorunStaticAnalysis(SAST)andSoftware
CompositionAnalysis(SCA)oncodethathasbeengeneratedbyAI.Thiswillhelpensurecodequality,protectIPrightsandcutdownonAImistakesand
misrepresentations.
RelatedResearch:
Gartner,Inc.|G00800663Page14of23
QuickAnswer:MitigatingtheTopFiveSecurityRisksofAICoding
EmergingTech:GenerativeAICodeAssistantsAreBecomingEssentialtoDeveloperExperience
MagicQuadrantforApplicationSecurityTestingHypeCycleforApplicationSecurity,2023
InnovationGuideforAICodingAssistants
StrategicPlanningAssumption:By2026,attacksusingAI-generateddeepfakesonfacebiometricswillmeanthat30%ofenterpriseswillnolongerconsidersuchidentity
veri?cationandauthenticationsolutionstobereliable
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)前教育培訓(xùn)心得體會
- 個(gè)人閱兵申請書
- 大數(shù)據(jù)分析在深化新聞報(bào)道中的應(yīng)用
- 貸款貧困證明申請書
- 大學(xué)生創(chuàng)業(yè)商業(yè)項(xiàng)目計(jì)劃書怎么寫
- 大學(xué)生做什么最好創(chuàng)業(yè)項(xiàng)目
- 外墻安全網(wǎng)施工方案
- 小學(xué)四年級數(shù)學(xué)三位數(shù)除以兩位數(shù)同步考核例題大全附答案
- ktv雙十一活動策劃書
- 房地產(chǎn)銷售提升策略
- 數(shù)據(jù)結(jié)構(gòu)英文教學(xué)課件:chapter1 Introduction
- 數(shù)學(xué)-九宮數(shù)獨(dú)100題(附答案)
- 中國農(nóng)業(yè)發(fā)展銀行XX支行 關(guān)于綜合評價(jià)自評情況的報(bào)告
- 2010年宣武區(qū)第六屆中小學(xué)生地理知識競賽題庫
- 人教三年級數(shù)學(xué)下冊表格式全冊
- QC課題提高檢查井周邊壓實(shí)
- 應(yīng)征公民體格檢查表(征兵)
- ACL磁致伸縮液位計(jì)說明書
- 優(yōu)秀教研組評比制度及實(shí)施細(xì)則
- 慈善祖師—太乙救苦天尊經(jīng)文選集拼音版
- 3建筑工程規(guī)劃放線、驗(yàn)線多測合一成果報(bào)告書
評論
0/150
提交評論