![安徽建筑大學(xué)《數(shù)據(jù)分析中俄》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view6/M02/0C/08/wKhkGWeoTeqASk6JAALQ6Apr_Vw387.jpg)
![安徽建筑大學(xué)《數(shù)據(jù)分析中俄》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view6/M02/0C/08/wKhkGWeoTeqASk6JAALQ6Apr_Vw3872.jpg)
![安徽建筑大學(xué)《數(shù)據(jù)分析中俄》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view6/M02/0C/08/wKhkGWeoTeqASk6JAALQ6Apr_Vw3873.jpg)
![安徽建筑大學(xué)《數(shù)據(jù)分析中俄》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view6/M02/0C/08/wKhkGWeoTeqASk6JAALQ6Apr_Vw3874.jpg)
![安徽建筑大學(xué)《數(shù)據(jù)分析中俄》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view6/M02/0C/08/wKhkGWeoTeqASk6JAALQ6Apr_Vw3875.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)安徽建筑大學(xué)
《數(shù)據(jù)分析中俄》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了得到準(zhǔn)確和可靠的分析結(jié)果,需要對(duì)數(shù)據(jù)進(jìn)行有效的清洗。以下哪種數(shù)據(jù)清洗方法在處理這種復(fù)雜的數(shù)據(jù)質(zhì)量問(wèn)題時(shí)最為有效?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則糾正錯(cuò)誤數(shù)據(jù)D.以上方法結(jié)合使用2、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問(wèn)題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問(wèn)題時(shí)更能提高模型對(duì)少數(shù)類(欺詐交易)的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.合成少數(shù)類過(guò)采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用3、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的不僅僅是展示數(shù)據(jù)。以下關(guān)于數(shù)據(jù)可視化目的的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化的目的是幫助人們更好地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì)B.數(shù)據(jù)可視化的目的是提高數(shù)據(jù)分析的效率,減少分析時(shí)間和成本C.數(shù)據(jù)可視化的目的是增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化的目的是為了讓數(shù)據(jù)分析報(bào)告看起來(lái)更漂亮,沒(méi)有其他實(shí)際作用4、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來(lái)自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡(jiǎn)單拼接,無(wú)需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會(huì)引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對(duì)于不同結(jié)構(gòu)的數(shù)據(jù)源無(wú)法進(jìn)行融合5、在數(shù)據(jù)挖掘中,關(guān)聯(lián)規(guī)則挖掘是一種常見(jiàn)的方法。以下關(guān)于關(guān)聯(lián)規(guī)則的描述,正確的是:()A.關(guān)聯(lián)規(guī)則只能用于發(fā)現(xiàn)商品之間的購(gòu)買關(guān)聯(lián)B.支持度表示同時(shí)購(gòu)買兩種商品的顧客比例C.置信度越高,說(shuō)明規(guī)則的可靠性越強(qiáng)D.提升度小于1時(shí),表示兩種商品存在負(fù)相關(guān)關(guān)系6、在數(shù)據(jù)分析中,數(shù)據(jù)的歸一化和標(biāo)準(zhǔn)化是常見(jiàn)的操作。假設(shè)你有一個(gè)包含不同量綱特征的數(shù)據(jù)集,以下關(guān)于這兩種操作的作用,哪一項(xiàng)是最關(guān)鍵的?()A.使數(shù)據(jù)符合正態(tài)分布,便于進(jìn)行統(tǒng)計(jì)分析B.消除特征之間的量綱差異,使不同特征具有可比性C.增加數(shù)據(jù)的多樣性和復(fù)雜性D.沒(méi)有實(shí)際作用,可以忽略7、數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)需要考慮多方面因素。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)設(shè)計(jì)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)包括數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和數(shù)據(jù)訪問(wèn)等部分B.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)考慮數(shù)據(jù)的規(guī)模、增長(zhǎng)速度和使用頻率等因素C.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)可以采用分層架構(gòu),將數(shù)據(jù)分為不同的層次進(jìn)行管理D.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)一旦確定就不能再進(jìn)行調(diào)整和優(yōu)化,否則會(huì)影響系統(tǒng)的穩(wěn)定性8、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理以去除噪聲,以下哪種方法可能會(huì)被使用?()A.中值濾波B.均值濾波C.高斯濾波D.以上都是9、在數(shù)據(jù)分析中,決策樹(shù)是一種常用的分類算法。假設(shè)要根據(jù)客戶的特征預(yù)測(cè)他們是否會(huì)購(gòu)買某種產(chǎn)品,以下關(guān)于決策樹(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹(shù)通過(guò)對(duì)數(shù)據(jù)進(jìn)行逐步分裂,構(gòu)建樹(shù)狀結(jié)構(gòu)來(lái)進(jìn)行分類預(yù)測(cè)B.可以通過(guò)剪枝技術(shù)來(lái)防止決策樹(shù)過(guò)擬合,提高模型的泛化能力C.決策樹(shù)的生成過(guò)程完全是自動(dòng)的,不需要人工干預(yù)和調(diào)整D.隨機(jī)森林是基于決策樹(shù)的集成學(xué)習(xí)算法,能夠提高預(yù)測(cè)的準(zhǔn)確性和穩(wěn)定性10、假設(shè)正在分析一個(gè)網(wǎng)站的用戶行為數(shù)據(jù),以優(yōu)化網(wǎng)站布局。以下關(guān)于用戶行為分析的描述,正確的是:()A.只關(guān)注用戶的點(diǎn)擊次數(shù),就能了解用戶的興趣和偏好B.頁(yè)面停留時(shí)間越短,說(shuō)明用戶對(duì)該頁(yè)面越感興趣C.分析用戶的訪問(wèn)路徑可以發(fā)現(xiàn)網(wǎng)站的熱門頁(yè)面和流程瓶頸D.用戶的注冊(cè)信息對(duì)分析用戶行為沒(méi)有幫助11、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問(wèn)題來(lái)確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說(shuō)法中,錯(cuò)誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類型的問(wèn)題和數(shù)據(jù),需要根據(jù)實(shí)際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗(yàn)和案例,但不能完全依賴C.選擇數(shù)據(jù)分析方法時(shí),應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響分析結(jié)果的可靠性12、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的營(yíng)銷策略是否有效。以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不正確的?()A.零假設(shè)通常表示沒(méi)有差異或沒(méi)有效果B.通過(guò)計(jì)算檢驗(yàn)統(tǒng)計(jì)量和p值來(lái)決定是否拒絕零假設(shè)C.p值越小,說(shuō)明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗(yàn)的結(jié)果一定能夠準(zhǔn)確地反映實(shí)際情況,不存在誤差13、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)的銷售額及其隨時(shí)間的變化趨勢(shì),以下哪種可視化圖表可能是最適合的?()A.餅圖B.柱狀圖C.折線圖D.箱線圖14、在數(shù)據(jù)分析中,建立回歸模型用于預(yù)測(cè)是常見(jiàn)的任務(wù)。假設(shè)我們要根據(jù)房屋的面積、位置和房齡等因素來(lái)預(yù)測(cè)房?jī)r(jià),以下哪種回歸模型可能在這種情況下表現(xiàn)較好?()A.線性回歸B.邏輯回歸C.多項(xiàng)式回歸D.嶺回歸15、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購(gòu)買行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹(shù)的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對(duì)所有客戶采用相同的策略16、當(dāng)分析兩個(gè)變量之間的關(guān)系時(shí),如果散點(diǎn)圖呈現(xiàn)出非線性的趨勢(shì),以下哪種方法可以更好地?cái)M合這種關(guān)系?()A.線性回歸B.多項(xiàng)式回歸C.邏輯回歸D.嶺回歸17、在進(jìn)行數(shù)據(jù)挖掘任務(wù)時(shí),關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集。假設(shè)在一個(gè)超市購(gòu)物數(shù)據(jù)集中,發(fā)現(xiàn)面包、牛奶和雞蛋經(jīng)常一起被購(gòu)買。如果要進(jìn)一步提高關(guān)聯(lián)規(guī)則的實(shí)用性,以下哪個(gè)步驟可能是必要的?()A.增加更多商品種類到分析中B.考慮商品的促銷活動(dòng)對(duì)購(gòu)買行為的影響C.分析不同時(shí)間段的購(gòu)買模式差異D.以上步驟都可能有幫助18、在數(shù)據(jù)分析中,聚類分析用于將數(shù)據(jù)分組。假設(shè)要對(duì)客戶進(jìn)行細(xì)分,以下關(guān)于聚類分析的描述,哪一項(xiàng)是不正確的?()A.K-Means聚類算法需要預(yù)先指定聚類的數(shù)量B.層次聚類可以生成層次結(jié)構(gòu)的聚類結(jié)果,便于觀察不同層次的分組情況C.聚類分析的結(jié)果只取決于算法和數(shù)據(jù),不受初始條件和參數(shù)的影響D.可以通過(guò)評(píng)估聚類的緊密度和分離度來(lái)選擇最優(yōu)的聚類方案19、在數(shù)據(jù)分析的探索性分析階段,假設(shè)面對(duì)一個(gè)包含消費(fèi)者購(gòu)買行為的大型數(shù)據(jù)集,包括購(gòu)買金額、購(gòu)買頻率、購(gòu)買商品類別等多個(gè)變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關(guān)系,以下哪種方法可能最為有效?()A.計(jì)算各個(gè)變量的均值、中位數(shù)和標(biāo)準(zhǔn)差等統(tǒng)計(jì)量B.進(jìn)行相關(guān)性分析,確定變量之間的關(guān)聯(lián)程度C.繪制直方圖和散點(diǎn)圖來(lái)觀察變量的分布和關(guān)系D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行簡(jiǎn)單觀察20、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹(shù)狀圖二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)描述數(shù)據(jù)挖掘中的圖挖掘的主要任務(wù)和方法,如節(jié)點(diǎn)重要性評(píng)估、子圖發(fā)現(xiàn)等,并舉例說(shuō)明在社交網(wǎng)絡(luò)結(jié)構(gòu)分析中的應(yīng)用。2、(本題5分)在數(shù)據(jù)挖掘中,如何處理噪聲數(shù)據(jù)?請(qǐng)介紹噪聲數(shù)據(jù)的處理方法和技術(shù),如濾波、平滑等,并舉例說(shuō)明。3、(本題5分)在數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì)中,如何進(jìn)行數(shù)據(jù)分區(qū)和索引優(yōu)化?請(qǐng)說(shuō)明分區(qū)和索引的類型、適用場(chǎng)景和優(yōu)化策略,并舉例說(shuō)明。4、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的不確定性量化,包括概率分布估計(jì)、置信區(qū)間計(jì)算等方法和應(yīng)用。5、(本題5分)在數(shù)據(jù)倉(cāng)庫(kù)中,如何進(jìn)行數(shù)據(jù)存儲(chǔ)的優(yōu)化以提高查詢性能?請(qǐng)說(shuō)明存儲(chǔ)格式選擇、分區(qū)策略等方面的優(yōu)化方法,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線教育平臺(tái)收集了不同年齡段學(xué)生的學(xué)習(xí)行為數(shù)據(jù)、學(xué)習(xí)效果評(píng)估等。研究如何根據(jù)這些數(shù)據(jù)開(kāi)發(fā)適合不同年齡段的課程和教學(xué)方法。2、(本題5分)某電商平臺(tái)的母嬰產(chǎn)品類目擁有銷售數(shù)據(jù),包括品牌、產(chǎn)品類別、價(jià)格、銷量、用戶年齡等。分析不同年齡段用戶對(duì)母嬰產(chǎn)品品牌和類別的選擇偏好。3、(本題5分)某電信運(yùn)營(yíng)商擁有用戶的通話記錄、短信數(shù)據(jù)、流量使用情況等信息。思考如何通過(guò)這些數(shù)據(jù)發(fā)現(xiàn)用戶的行為模式,推出更合適的套餐。4、(本題5分)某服裝品牌收集了各門店的銷售數(shù)據(jù)、庫(kù)存數(shù)據(jù)、時(shí)尚趨勢(shì)等信息。思考如何根據(jù)這些數(shù)據(jù)制定精準(zhǔn)的生產(chǎn)計(jì)劃和庫(kù)存管理策略。5、(本題5分)某在線母嬰護(hù)理服務(wù)平臺(tái)掌握了服務(wù)預(yù)約數(shù)據(jù)、用戶評(píng)價(jià)、護(hù)理師技能水平等。優(yōu)化母嬰護(hù)理服務(wù),提高用戶滿意度。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在市場(chǎng)營(yíng)銷活動(dòng)中,數(shù)據(jù)分析能夠精準(zhǔn)定位目標(biāo)客戶和評(píng)估營(yíng)銷效果。請(qǐng)?jiān)敿?xì)論述如何利用數(shù)據(jù)分析進(jìn)行市場(chǎng)細(xì)分、目標(biāo)客戶畫像和營(yíng)銷活動(dòng)的投資回報(bào)率分析,分析所使用的數(shù)據(jù)分析方法和工具,以及如何根據(jù)分析結(jié)果調(diào)整營(yíng)銷策略。2、(本題10
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安保服務(wù)外包合同
- 湘教版數(shù)學(xué)九年級(jí)上冊(cè)《3.4.1相似三角形的判定》聽(tīng)評(píng)課記錄
- 人教版地理七年級(jí)下冊(cè)8.1《中東》(第2課時(shí))聽(tīng)課評(píng)課記錄
- 湘教版數(shù)學(xué)八年級(jí)上冊(cè)1.1《分式的概念》聽(tīng)評(píng)課記錄2
- 甲方終止租賃合同范本(2篇)
- 新版湘教版秋八年級(jí)數(shù)學(xué)上冊(cè)第二章三角形課題三角形的基本概念聽(tīng)評(píng)課記錄
- 人教版數(shù)學(xué)七年級(jí)下冊(cè)5.3.2-2《命題、定理、證明2》聽(tīng)評(píng)課記錄1
- 一年級(jí)下數(shù)學(xué)聽(tīng)評(píng)課記錄
- 湘師大版道德與法治九年級(jí)下冊(cè)1.2《充滿活力的社會(huì)主義市場(chǎng)經(jīng)濟(jì)》(第1課時(shí))聽(tīng)課評(píng)課記錄
- 一二年級(jí)聽(tīng)評(píng)課記錄
- 精裝修室內(nèi)施工組織部署
- 農(nóng)用拖拉機(jī)考試題庫(kù)
- GJB438C模板-軟件開(kāi)發(fā)計(jì)劃(已按標(biāo)準(zhǔn)公文格式校準(zhǔn))
- 2023年政府采購(gòu)評(píng)審專家考試真題及答案
- 云端數(shù)據(jù)加密與密鑰管理解決方案
- 毒麻藥品試題答案
- 元明時(shí)期左江上思州黃姓土司問(wèn)題研究
- 傳統(tǒng)體育養(yǎng)生學(xué)
- DB4401∕T 33-2019 電梯托管標(biāo)準(zhǔn)化管理規(guī)范
- 松原市人民政府關(guān)于印發(fā)松原市招商引資服務(wù)公司組建工作實(shí)施方案的通知
- 義工財(cái)務(wù)管理制度范文
評(píng)論
0/150
提交評(píng)論