廣東省梅州市五華縣2024年高三考前演練卷(三)數(shù)學(xué)試題_第1頁(yè)
廣東省梅州市五華縣2024年高三考前演練卷(三)數(shù)學(xué)試題_第2頁(yè)
廣東省梅州市五華縣2024年高三考前演練卷(三)數(shù)學(xué)試題_第3頁(yè)
廣東省梅州市五華縣2024年高三考前演練卷(三)數(shù)學(xué)試題_第4頁(yè)
廣東省梅州市五華縣2024年高三考前演練卷(三)數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省梅州市五華縣2023年高三考前演練卷(三)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件2.在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.3.設(shè)命題:,,則為A., B.,C., D.,4.已知實(shí)數(shù)x,y滿(mǎn)足約束條件,若的最大值為2,則實(shí)數(shù)k的值為()A.1 B. C.2 D.5.已知中,角、所對(duì)的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件6.臺(tái)球是一項(xiàng)國(guó)際上廣泛流行的高雅室內(nèi)體育運(yùn)動(dòng),也叫桌球(中國(guó)粵港澳地區(qū)的叫法)、撞球(中國(guó)臺(tái)灣地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺(tái)球技術(shù)表演節(jié)目中,在臺(tái)球桌上,畫(huà)出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個(gè)目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過(guò)擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長(zhǎng)為()A.50cm B.40cm C.50cm D.20cm7.的展開(kāi)式中的系數(shù)為()A. B. C. D.8.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.9.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.10.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.11.設(shè)分別為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.12.設(shè)復(fù)數(shù)滿(mǎn)足(為虛數(shù)單位),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若展開(kāi)式中的常數(shù)項(xiàng)為240,則實(shí)數(shù)的值為_(kāi)_______.14.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個(gè)等比數(shù)列的公比為_(kāi)____.15.在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為_(kāi)_______.16.已知數(shù)列為等比數(shù)列,,則_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.18.(12分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.19.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.20.(12分)設(shè)橢圓,直線經(jīng)過(guò)點(diǎn),直線經(jīng)過(guò)點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).(Ⅰ)若分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說(shuō)明理由.21.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動(dòng)點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長(zhǎng)和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.22.(10分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來(lái),武漢醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重缺乏,全國(guó)各地紛紛馳援.截至1月30日12時(shí),湖北省累計(jì)接收捐贈(zèng)物資615.43萬(wàn)件,包括醫(yī)用防護(hù)服2.6萬(wàn)套N95口軍47.9萬(wàn)個(gè),醫(yī)用一次性口罩172.87萬(wàn)個(gè),護(hù)目鏡3.93萬(wàn)個(gè)等.中某運(yùn)輸隊(duì)接到給武漢運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車(chē),6輛載重為10t的B型卡車(chē),10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送720t物資.已知每輛卡車(chē)每天往返的次數(shù):A型卡車(chē)16次,B型卡車(chē)12次;每輛卡車(chē)每天往返的成本:A型卡車(chē)240元,B型卡車(chē)378元.求每天派出A型卡車(chē)與B型卡車(chē)各多少輛,運(yùn)輸隊(duì)所花的成本最低?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.2.D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.3.D【解析】

直接利用全稱(chēng)命題的否定是特稱(chēng)命題寫(xiě)出結(jié)果即可.【詳解】因?yàn)槿Q(chēng)命題的否定是特稱(chēng)命題,所以,命題:,,則為:,.故本題答案為D.【點(diǎn)睛】本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系,是基礎(chǔ)題.4.B【解析】

畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類(lèi)討論是解題的關(guān)鍵,屬于中檔題.5.D【解析】

由大邊對(duì)大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對(duì)的邊分別是、,由大邊對(duì)大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點(diǎn)睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識(shí),考查邏輯推理能力,是基礎(chǔ)題.6.D【解析】

過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來(lái),根據(jù),列方程求出,進(jìn)而可得正方形的邊長(zhǎng).【詳解】過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)?,則,整理化簡(jiǎn)得,又,得,.即該正方形的邊長(zhǎng)為.故選:D.【點(diǎn)睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.7.C【解析】由題意,根據(jù)二項(xiàng)式定理展開(kāi)式的通項(xiàng)公式,得展開(kāi)式的通項(xiàng)為,則展開(kāi)式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.8.C【解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.9.D【解析】

求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.10.D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.11.C【解析】

如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.12.A【解析】

由復(fù)數(shù)的除法運(yùn)算可整理得到,由此得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),從而確定所處象限.【詳解】由得:,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在象限的求解,涉及到復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-3【解析】

依題意可得二項(xiàng)式展開(kāi)式的常數(shù)項(xiàng)為即可得到方程,解得即可;【詳解】解:∵二項(xiàng)式的展開(kāi)式中的常數(shù)項(xiàng)為,∴解得.故答案為:【點(diǎn)睛】本題考查二項(xiàng)式展開(kāi)式中常數(shù)項(xiàng)的計(jì)算,屬于基礎(chǔ)題.14.4【解析】

根據(jù)等差數(shù)列關(guān)系,用首項(xiàng)和公差表示出,解出首項(xiàng)和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點(diǎn)睛】此題考查等差數(shù)列基本量的計(jì)算,涉及等比中項(xiàng),考查基本計(jì)算能力.15.【解析】

解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過(guò)曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時(shí),到直線的距離;當(dāng)時(shí),到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來(lái)找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.16.81【解析】

設(shè)數(shù)列的公比為,利用等比數(shù)列通項(xiàng)公式求出,代入等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因?yàn)?,由等比?shù)列通項(xiàng)公式可得,,解得,由等比數(shù)列通項(xiàng)公式可得,.故答案為:【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.18.(1);(2)見(jiàn)解析【解析】

(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點(diǎn)的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時(shí);;時(shí).(2)①過(guò)點(diǎn),的直線為,則令,,,.②過(guò)點(diǎn),的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點(diǎn)的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點(diǎn)的橫坐標(biāo)依次為,.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于較難題.19.(1)見(jiàn)解析;(2)【解析】

(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點(diǎn),∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點(diǎn),,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因?yàn)樗倪呅问蔷匦?,,,,設(shè)幾何體的體積為,則,∴,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.20.(Ⅰ);(Ⅱ)證明見(jiàn)解析;(Ⅲ)不能,證明見(jiàn)解析【解析】

(Ⅰ)計(jì)算得到故,,,,計(jì)算得到面積.(Ⅱ)設(shè)為,聯(lián)立方程得到,計(jì)算,同理,根據(jù)得到,得到證明.(Ⅲ)設(shè)中點(diǎn)為,根據(jù)點(diǎn)差法得到,同理,故,得到結(jié)論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設(shè)為,則,故,設(shè),,故,,同理可得,,故,即,,故.(Ⅲ)設(shè)中點(diǎn)為,則,,相減得到,即,同理可得:的中點(diǎn),滿(mǎn)足,故,故四邊形不能為矩形.【點(diǎn)睛】本題考查了橢圓內(nèi)四邊形的面積,形狀,根據(jù)四邊形形狀求參數(shù),意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21.(1)(2)或【解析】

(1)根據(jù)題意計(jì)算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計(jì)算得到答案.【詳解】(1)由平行四邊形的周長(zhǎng)為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過(guò)定點(diǎn).設(shè),由消得,所以,因?yàn)椋?因?yàn)辄c(diǎn)在以線段為直徑的圓上,所以,即,所以直線的方程或.【點(diǎn)睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.22.每天派出A型卡車(chē)輛,派出B型卡車(chē)輛,運(yùn)輸隊(duì)所花成本最低【解析】

設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論