四點共圓基本方法_第1頁
四點共圓基本方法_第2頁
四點共圓基本方法_第3頁
四點共圓基本方法_第4頁
四點共圓基本方法_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四點共圓基本方法第一篇:四點共圓基本方法四點共圓基本方法方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.方法2把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓.方法3把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.方法4把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓.方法5把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.方法6證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.上述六種基本方法中的每一種的根據(jù),就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結合圖形的特點,在這六種基本方法中選擇一種證法,給予證明.判定與性質:圓內接四邊形的對角和為180度,并且任何一個外角都等于它的內對角。如四邊形ABCD內接于圓O,延長AB至E,AC、BD交于P,則A+C=180度,B+D=180度,角ABC=角ADC(同弧所對的圓周角相等)。角CBE=角D(外角等于內對角)△ABP∽△DCP(三個內角對應相等)AP*CP=BP*DP(相交弦定理)AB*CD+AD*CB=AC*BD(托勒密定理)方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.(若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓.方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.(根據(jù)托勒密定理的逆定理)方法5證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.上述五種基本方法中的每一種的根據(jù),就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.證明四點共圓的基本方法證明四點共圓有下述一些基本方法:方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓。方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓.(若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓。方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓(根據(jù)相交弦定理的逆定理);或把被證共圓的四點兩兩連結并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓。(根據(jù)托勒密定理的逆定理)方法5證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點,即可肯定這四點共圓.上述五種基本方法中的每一種的根據(jù),就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.判定與性質:圓內接四邊形的對角和為180°,并且任何一個外角都等于它的內對角。如四邊形ABCD內接于圓O,延長AB和DC交至E,過點E作圓O的切線EF,AC、BD交于P,則A+C=π,B+D=π,角DBC=角DAC(同弧所對的圓周角相等)。角CBE=角ADE(外角等于內對角)△ABP∽△DCP(三個內角對應相等)AP*CP=BP*DP(相交弦定理)EB*EA=EC*ED(割線定理)EF*EF=EB*EA=EC*ED(切割線定理)(切割線定理,割線定理,相交弦定理統(tǒng)稱圓冪定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)弦切角定理方法6同斜邊的兩個RT三角形的四個頂點共圓,其斜邊為圓的直徑。第二篇:四點共圓證明方法:四點共圓的證明方法有以下五種,本例用的是第二種方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓.(若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓.方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.(根據(jù)托勒密定理的逆定理)方法5證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點,即可肯定這四點共圓.上述五種基本方法中的每一種的根據(jù),就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.第三篇:證明四點共圓有下述一些基本方法證明四點共圓有下述一些基本方法證明四點共圓有下述一些基本方法:方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.(若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓.方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.(根據(jù)托勒密定理的逆定理)方法5證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.上述五種基本方法中的每一種的根據(jù),就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結合圖形的特點,在這六種基本方法中選擇一種證法,給予證明.判定與性質:圓內接四邊形的對角和為180度,并且任何一個外角都等于它的內對角。如四邊形ABCD內接于圓O,延長AB和DC交至E,過點E作圓O的切線EF,AC、BD交于P,則A+C=180度,B+D=180度,角ABC=角ADC(同弧所對的圓周角相等)。角CBE=角D(外角等于內對角)△ABP∽△DCP(三個內角對應相等)AP*CP=BP*DP(相交弦定理)EB*EA=EC*ED(割線定理)EF*EF=EB*EA=EC*ED(切割線定理)(切割線定理,割線定理,相交弦定理統(tǒng)稱圓冪定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)第四篇:四點共圓四點共圓的定義:如果同一平面內的四個點在同一個圓上,則稱這四個點共圓,一般簡稱為“四點共圓”證明四點共圓有下述一些基本方法:方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.方法2把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓.方法3把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.方法4把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓.方法5把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.方法6證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.上述六種基本方法中的每一種的根據(jù),就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結合圖形的特點,在這六種基本方法中選擇一種證法,給予證明.判定與性質:圓內接四邊形的對角和為180度,并且任何一個外角都等于它的內對角。如四邊形ABCD內接于圓O,延長AB至E,AC、BD交于P,則A+C=180度,B+D=180度,角ABC=角ADC(同弧所對的圓周角相等)。角CBE=角D(外角等于內對角)△ABP∽△DCP(三個內角對應相等)AP*CP=BP*DP(相交弦定理)AB*CD+AD*CB=AC*BD(托勒密定理)第五篇:證明四點共圓方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.方法2方法3方法4同側,若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓.(若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內對角時,即可肯定這四點共圓.把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓(相交弦定理的逆定理);或把

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論