![江西藝術職業(yè)學院《機器學習基礎》2023-2024學年第二學期期末試卷_第1頁](http://file4.renrendoc.com/view6/M03/2D/18/wKhkGWeuuvqAJhlNAANu4gD2d_s488.jpg)
![江西藝術職業(yè)學院《機器學習基礎》2023-2024學年第二學期期末試卷_第2頁](http://file4.renrendoc.com/view6/M03/2D/18/wKhkGWeuuvqAJhlNAANu4gD2d_s4882.jpg)
![江西藝術職業(yè)學院《機器學習基礎》2023-2024學年第二學期期末試卷_第3頁](http://file4.renrendoc.com/view6/M03/2D/18/wKhkGWeuuvqAJhlNAANu4gD2d_s4883.jpg)
![江西藝術職業(yè)學院《機器學習基礎》2023-2024學年第二學期期末試卷_第4頁](http://file4.renrendoc.com/view6/M03/2D/18/wKhkGWeuuvqAJhlNAANu4gD2d_s4884.jpg)
![江西藝術職業(yè)學院《機器學習基礎》2023-2024學年第二學期期末試卷_第5頁](http://file4.renrendoc.com/view6/M03/2D/18/wKhkGWeuuvqAJhlNAANu4gD2d_s4885.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江西藝術職業(yè)學院
《機器學習基礎》2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復雜的深度學習算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務,優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法2、在一個信用評估的問題中,需要根據(jù)個人的信用記錄、收入、債務等信息評估其信用風險。以下哪種模型評估指標可能是最重要的?()A.準確率(Accuracy),衡量正確分類的比例,但在不平衡數(shù)據(jù)集中可能不準確B.召回率(Recall),關注正例的識別能力,但可能導致誤判增加C.F1分數(shù),綜合考慮準確率和召回率,但對不同類別的權重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評估模型在不同閾值下的性能,對不平衡數(shù)據(jù)較穩(wěn)健3、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設一個機器人要通過強化學習來學習如何在復雜的環(huán)境中行走。以下關于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略4、想象一個市場營銷的項目,需要根據(jù)客戶的購買歷史、瀏覽行為和人口統(tǒng)計信息來預測其未來的購買傾向。同時,要能夠解釋模型的決策依據(jù)以指導營銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過系數(shù)分析解釋變量的影響,但對于復雜的非線性關系可能不敏感B.運用決策樹集成算法,如梯度提升樹(GradientBoostingTree),準確性較高,且可以通過特征重要性評估解釋模型,但局部解釋性相對較弱C.采用深度學習中的多層卷積神經(jīng)網(wǎng)絡,預測能力強,但幾乎無法提供直觀的解釋D.構建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無法處理復雜的數(shù)據(jù)模式和不確定性5、在構建一個機器學習模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項B.減少訓練輪數(shù)C.增加模型的復雜度D.以上方法都不行6、在一個情感分析任務中,需要同時考慮文本的語義和語法信息。以下哪種模型結構可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(CNN),能夠提取局部特征,但對序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(RNN),擅長處理序列數(shù)據(jù),但長期依賴問題較嚴重C.長短時記憶網(wǎng)絡(LSTM),改進了RNN的長期記憶能力,但計算復雜度較高D.結合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢7、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預測值與真實值之間的MSE較大,這意味著什么()A.模型的預測非常準確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能8、某研究需要對音頻信號進行分類,例如區(qū)分不同的音樂風格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時域特征C.時頻特征D.以上特征都常用9、在一個圖像分類任務中,模型在訓練集上表現(xiàn)良好,但在測試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因導致的?()A.過擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當10、在監(jiān)督學習中,常見的算法有線性回歸、邏輯回歸、支持向量機等。以下關于監(jiān)督學習算法的說法中,錯誤的是:線性回歸用于預測連續(xù)值,邏輯回歸用于分類任務。支持向量機通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關于監(jiān)督學習算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學習算法的性能只取決于模型的復雜度,與數(shù)據(jù)的特征選擇無關11、在一個監(jiān)督學習問題中,我們需要評估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評估指標需要特別謹慎地使用?()A.準確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)12、在自然語言處理任務中,如文本分類,詞向量表示是基礎。常見的詞向量模型有Word2Vec和GloVe等。假設我們有一個大量的文本數(shù)據(jù)集,想要得到高質量的詞向量表示,同時考慮到計算效率和效果。以下關于這兩種詞向量模型的比較,哪一項是不準確的?()A.Word2Vec可以通過CBOW和Skip-gram兩種方式訓練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計信息,能夠捕捉更全局的語義關系C.Word2Vec訓練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務13、在分類問題中,如果正負樣本比例嚴重失衡,以下哪種評價指標更合適?()A.準確率B.召回率C.F1值D.均方誤差14、在一個無監(jiān)督學習問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結構。如果數(shù)據(jù)具有層次結構,以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對抗網(wǎng)絡(GAN)C.層次聚類D.以上方法都可以15、某研究團隊正在開發(fā)一個用于醫(yī)療診斷的機器學習系統(tǒng),需要對疾病進行預測。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢?()A.深度學習模型B.決策樹C.集成學習模型D.強化學習模型16、在機器學習中,特征選擇是一項重要的任務,旨在從眾多的原始特征中選擇出對模型性能有顯著影響的特征。假設我們有一個包含大量特征的數(shù)據(jù)集,在進行特征選擇時,以下哪種方法通常不被采用?()A.基于相關性分析,選擇與目標變量高度相關的特征B.隨機選擇一部分特征,進行試驗和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領域知識和經(jīng)驗,手動選擇特征17、假設我們要使用機器學習算法來預測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預測結果幫助較?。ǎ〢.公司的財務報表數(shù)據(jù)B.社交媒體上關于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟指標18、在一個圖像分類任務中,如果需要快速進行模型的訓練和預測,以下哪種輕量級模型架構可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG19、在處理文本分類任務時,除了傳統(tǒng)的機器學習算法,深度學習模型也表現(xiàn)出色。假設我們要對新聞文章進行分類。以下關于文本分類模型的描述,哪一項是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(RNN)及其變體如長短期記憶網(wǎng)絡(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(CNN)也可以應用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構在處理長文本時性能優(yōu)于RNN和CNN,但其計算復雜度較高D.深度學習模型在文本分類任務中總是比傳統(tǒng)機器學習算法(如樸素貝葉斯、支持向量機)效果好20、假設要對大量的文本數(shù)據(jù)進行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對短文本效果可能不好B.非負矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質量和表示D.層次聚類方法,能夠展示主題的層次結構,但計算復雜度較高21、在一個工業(yè)生產(chǎn)的質量控制場景中,需要通過機器學習來實時監(jiān)測產(chǎn)品的質量參數(shù),及時發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動態(tài)變化和噪聲等特點。以下哪種監(jiān)測和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測異常數(shù)據(jù)點,但對于高維數(shù)據(jù)效果可能不穩(wěn)定C.運用自組織映射(SOM)網(wǎng)絡,能夠對數(shù)據(jù)進行聚類和可視化,但實時性可能不足D.利用基于深度學習的自動編碼器(Autoencoder),學習正常數(shù)據(jù)的模式,對異常數(shù)據(jù)有較好的檢測能力,但訓練和計算成本較高22、某研究團隊正在開發(fā)一個用于醫(yī)療圖像診斷的機器學習模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強的強度B.使用更復雜的模型架構C.引入注意力機制D.以上方法都可以23、在進行強化學習中的策略優(yōu)化時,以下關于策略優(yōu)化方法的描述,哪一項是不正確的?()A.策略梯度方法通過直接計算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強化學習任務中都能取得相同的效果,不需要根據(jù)任務特點進行選擇24、在構建一個用于圖像識別的卷積神經(jīng)網(wǎng)絡(CNN)時,需要考慮許多因素。假設我們正在設計一個用于識別手寫數(shù)字的CNN模型。以下關于CNN設計的描述,哪一項是不正確的?()A.增加卷積層的數(shù)量可以提取更復雜的圖像特征,提高識別準確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計算復雜度,同時保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強模型的表達能力25、在一個異常檢測的任務中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結果影響較大D.以上算法結合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進行組合26、考慮一個時間序列預測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動平均(SARIMA)模型D.以上都可以27、在使用梯度下降算法優(yōu)化模型參數(shù)時,如果學習率設置過大,可能會導致以下哪種情況()A.收斂速度加快B.陷入局部最優(yōu)解C.模型無法收斂D.以上情況都不會發(fā)生28、假設正在開發(fā)一個自動駕駛系統(tǒng),其中一個關鍵任務是目標檢測,例如識別道路上的行人、車輛和障礙物。在選擇目標檢測算法時,需要考慮算法的準確性、實時性和對不同環(huán)境的適應性。以下哪種目標檢測算法在實時性要求較高的場景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測精度B.YOLO(YouOnlyLookOnce),能夠實現(xiàn)快速檢測C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實時應用29、無監(jiān)督學習算法主要包括聚類和降維等方法。以下關于無監(jiān)督學習算法的說法中,錯誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關于無監(jiān)督學習算法的說法錯誤的是()A.K均值聚類算法需要預先指定聚類的個數(shù)K,并且對初始值比較敏感B.層次聚類算法可以生成樹形結構的聚類結果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學習算法不需要任何先驗知識,完全由數(shù)據(jù)本身驅動30、欠擬合也是機器學習中需要關注的問題。以下關于欠擬合的說法中,錯誤的是:欠擬合是指模型在訓練數(shù)據(jù)和測試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡單或者數(shù)據(jù)特征不足。那么,下列關于欠擬合的說法錯誤的是()A.增加模型的復雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度屋頂光伏系統(tǒng)維護保養(yǎng)合同模板
- 學校安全管理方案
- 2024-2025學年廣西壯族自治區(qū)高三上學期11月聯(lián)考歷史試卷
- 2025年公共照明設施合同
- 2025年自動化設備購買與前期策劃協(xié)議
- 2025年住宅用地和樓宇訂購合同
- 2025年綠化養(yǎng)護承包合同范本
- 2025年外教聘請合作協(xié)議
- 2025年二手房產(chǎn)交易代理協(xié)議格式
- 2025年交通運輸中介合同協(xié)議書范本
- 醫(yī)學史完整教學課件
- 雙眼視異常處理方法-雙眼視異常的棱鏡處方(雙眼視檢查)
- NB-T32004-2018光伏并網(wǎng)逆變器技術規(guī)范
- 我國水體中抗生素的污染現(xiàn)狀、危害及防治建議
- 手術出血量的評估
- 報價單(產(chǎn)品報價單)
- 2020年8月自考00808商法試題及答案含解析
- 0-9任意四位數(shù)數(shù)位排列
- 隧道安全培訓課件
- 中醫(yī)護理的基本特點與護理原則-
- 小學勞動教育教研計劃
評論
0/150
提交評論