![青島飛洋職業(yè)技術(shù)學(xué)院《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view6/M01/05/28/wKhkGWewGvCARmpvAAMG2tz5v5s657.jpg)
![青島飛洋職業(yè)技術(shù)學(xué)院《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view6/M01/05/28/wKhkGWewGvCARmpvAAMG2tz5v5s6572.jpg)
![青島飛洋職業(yè)技術(shù)學(xué)院《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view6/M01/05/28/wKhkGWewGvCARmpvAAMG2tz5v5s6573.jpg)
![青島飛洋職業(yè)技術(shù)學(xué)院《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view6/M01/05/28/wKhkGWewGvCARmpvAAMG2tz5v5s6574.jpg)
![青島飛洋職業(yè)技術(shù)學(xué)院《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view6/M01/05/28/wKhkGWewGvCARmpvAAMG2tz5v5s6575.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁青島飛洋職業(yè)技術(shù)學(xué)院
《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、某機器學(xué)習(xí)項目需要對文本進行情感分類,同時考慮文本的上下文信息和語義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長短時記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語言模型(如BERT)微調(diào)D.以上模型都有可能2、在進行模型融合時,以下關(guān)于模型融合的方法和作用,哪一項是不準(zhǔn)確的?()A.可以通過平均多個模型的預(yù)測結(jié)果來進行融合,降低模型的方差B.堆疊(Stacking)是一種將多個模型的預(yù)測結(jié)果作為輸入,訓(xùn)練一個新的模型進行融合的方法C.模型融合可以結(jié)合不同模型的優(yōu)點,提高整體的預(yù)測性能D.模型融合總是能顯著提高模型的性能,無論各個模型的性能如何3、機器學(xué)習(xí)中的算法選擇需要考慮多個因素。以下關(guān)于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務(wù),優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法4、在機器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進行一次,后續(xù)不需要再進行調(diào)整和優(yōu)化5、在一個圖像識別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導(dǎo)致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進行優(yōu)化6、在強化學(xué)習(xí)中,智能體通過與環(huán)境進行交互來學(xué)習(xí)最優(yōu)策略。假設(shè)一個機器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會遇到各種障礙和獎勵。在這種情況下,以下哪種強化學(xué)習(xí)算法可能更適合解決這個問題?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇動作B.SARSA算法,基于當(dāng)前策略進行策略評估和改進C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法7、在機器學(xué)習(xí)中,交叉驗證是一種常用的評估模型性能和選擇超參數(shù)的方法。假設(shè)我們正在使用K折交叉驗證來評估一個分類模型。以下關(guān)于交叉驗證的描述,哪一項是不準(zhǔn)確的?()A.將數(shù)據(jù)集隨機分成K個大小相等的子集,依次選擇其中一個子集作為測試集,其余子集作為訓(xùn)練集B.通過計算K次實驗的平均準(zhǔn)確率等指標(biāo)來評估模型的性能C.可以在交叉驗證過程中同時調(diào)整多個超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗證只適用于小數(shù)據(jù)集,對于大數(shù)據(jù)集計算成本過高,不適用8、在一個回歸問題中,如果需要考慮多個輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以9、想象一個語音合成的任務(wù),需要生成自然流暢的語音。以下哪種技術(shù)可能是核心的?()A.基于規(guī)則的語音合成,方法簡單但不夠自然B.拼接式語音合成,利用預(yù)先錄制的語音片段拼接,但可能存在不連貫問題C.參數(shù)式語音合成,通過模型生成聲學(xué)參數(shù)再轉(zhuǎn)換為語音,但音質(zhì)可能受限D(zhuǎn).端到端的神經(jīng)語音合成,直接從文本生成語音,效果自然但訓(xùn)練難度大10、在進行數(shù)據(jù)預(yù)處理時,異常值的處理是一個重要環(huán)節(jié)。假設(shè)我們有一個包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關(guān)于異常值處理的方法,哪一項是不正確的?()A.可以通過可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計學(xué)方法,如三倍標(biāo)準(zhǔn)差原則,可以識別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對異常值進行修正或替換,使其更符合數(shù)據(jù)的整體分布11、某機器學(xué)習(xí)項目需要對大量的圖像進行分類,但是計算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮12、考慮一個時間序列預(yù)測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動平均(SARIMA)模型D.以上都可以13、在進行遷移學(xué)習(xí)時,以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場景和優(yōu)勢,哪一項是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時,可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進行遷移學(xué)習(xí)B.可以將在一個領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對于傳統(tǒng)機器學(xué)習(xí)模型不適用14、假設(shè)要對一個復(fù)雜的數(shù)據(jù)集進行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對非線性結(jié)構(gòu)不敏感C.t-分布隨機鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點和分析目的選擇合適的降維策略15、在進行機器學(xué)習(xí)模型部署時,需要考慮模型的計算效率和資源占用。假設(shè)我們訓(xùn)練了一個復(fù)雜的深度學(xué)習(xí)模型,但實際應(yīng)用場景中的計算資源有限。以下哪種方法可以在一定程度上減少模型的計算量和參數(shù)數(shù)量?()A.增加模型的層數(shù)和神經(jīng)元數(shù)量B.對模型進行量化,如使用低精度數(shù)值表示參數(shù)C.使用更復(fù)雜的激活函數(shù),提高模型的表達(dá)能力D.不進行任何處理,直接部署模型二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述機器學(xué)習(xí)中的遷移學(xué)習(xí)及其應(yīng)用場景。2、(本題5分)解釋機器學(xué)習(xí)中動量法在優(yōu)化算法中的作用。3、(本題5分)解釋如何使用機器學(xué)習(xí)進行冰川變化監(jiān)測。4、(本題5分)什么是推薦系統(tǒng)?常用的推薦算法有哪些?三、論述題(本大題共5個小題,共25分)1、(本題5分)分析機器學(xué)習(xí)在智能能源存儲中的應(yīng)用。舉例說明機器學(xué)習(xí)在電池壽命預(yù)測、儲能系統(tǒng)優(yōu)化、智能充電樁管理等方面的應(yīng)用,并探討其對智能能源存儲的影響及未來發(fā)展趨勢。2、(本題5分)論述在強化學(xué)習(xí)中,如何利用模仿學(xué)習(xí)(ImitationLearning)加速學(xué)習(xí)過程。研究模仿學(xué)習(xí)的適用場景和局限性。3、(本題5分)論述機器學(xué)習(xí)在智能醫(yī)療健康管理中的應(yīng)用。討論健康監(jiān)測、疾病預(yù)防、康復(fù)護理等方面的機器學(xué)習(xí)方法和應(yīng)用前景。4、(本題5分)論述機器學(xué)習(xí)在語音識別領(lǐng)域的應(yīng)用及技術(shù)挑戰(zhàn)。語音識別是機器學(xué)習(xí)的一個重要應(yīng)用領(lǐng)域,它可以實現(xiàn)語音到文本的轉(zhuǎn)換等功能。分析語音識別中的機器學(xué)習(xí)算法,以及面臨的噪聲干擾、口音差異等技術(shù)挑戰(zhàn)。5、(本題5分)論述集成學(xué)習(xí)中的Boosting算法(如Adaboost、GBDT)的思想和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024民間借貸合同范本(28篇)
- 2025年農(nóng)村子女撫養(yǎng)費用分擔(dān)協(xié)議
- 2025年供電企業(yè)與用戶用電合作協(xié)議
- 2025年共同策劃健身房合作合同書
- 企業(yè)勞動合同協(xié)議2025年
- 2025年企業(yè)員工勞動合同補充協(xié)議范本
- 2025年鋁合金預(yù)拉伸厚板和蒙皮鋁合金板項目立項申請報告模范
- 2025年高性能陶瓷復(fù)合材料項目立項申請報告模板
- 2025年企業(yè)變更代理協(xié)議
- 2025年漲緊輪項目提案報告模板
- 中國人口研究專題報告-中國2025-2100年人口預(yù)測與政策建議-西南財經(jīng)大學(xué)x清華大學(xué)-202501
- 建筑工程安全與管理
- 幼兒園開學(xué)教師安全知識培訓(xùn)
- 2024年山東水利職業(yè)學(xué)院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 遼寧省名校聯(lián)盟2025年高三1月份聯(lián)合考試 語文試卷(含答案詳解)
- 工廠廠區(qū)道路拆除實施方案
- 25版六年級寒假特色作業(yè)
- 浙江省杭州市9+1高中聯(lián)盟2025屆高三一診考試英語試卷含解析
- 2025教科版一年級科學(xué)下冊教學(xué)計劃
- 中學(xué)生勞動安全課件
- 旅游行業(yè)智慧旅游營銷策略與方案
評論
0/150
提交評論