江西生物科技職業(yè)學(xué)院《數(shù)值模擬技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
江西生物科技職業(yè)學(xué)院《數(shù)值模擬技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
江西生物科技職業(yè)學(xué)院《數(shù)值模擬技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
江西生物科技職業(yè)學(xué)院《數(shù)值模擬技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
江西生物科技職業(yè)學(xué)院《數(shù)值模擬技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)江西生物科技職業(yè)學(xué)院

《數(shù)值模擬技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,模型的可解釋性對(duì)于理解和信任模型結(jié)果很重要。假設(shè)你建立了一個(gè)復(fù)雜的機(jī)器學(xué)習(xí)模型,以下關(guān)于提高模型可解釋性的方法,哪一項(xiàng)是最有效的?()A.使用黑盒模型,不關(guān)注可解釋性B.繪制模型的決策樹(shù),直觀展示決策過(guò)程C.只關(guān)注模型的預(yù)測(cè)準(zhǔn)確率,不考慮解釋性D.對(duì)模型的內(nèi)部工作原理不做任何解釋,讓用戶自行理解2、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無(wú)能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架3、在進(jìn)行數(shù)據(jù)探索性分析時(shí),我們需要對(duì)數(shù)據(jù)的分布、相關(guān)性等進(jìn)行初步了解。假設(shè)我們有一個(gè)包含多個(gè)變量的數(shù)據(jù)集。以下關(guān)于探索性分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.繪制直方圖可以觀察數(shù)據(jù)的分布形態(tài),判斷是否符合正態(tài)分布B.計(jì)算相關(guān)系數(shù)可以衡量變量之間的線性相關(guān)性C.探索性分析只是對(duì)數(shù)據(jù)的初步了解,對(duì)后續(xù)的分析沒(méi)有實(shí)質(zhì)性的幫助D.可以通過(guò)數(shù)據(jù)可視化和統(tǒng)計(jì)摘要來(lái)發(fā)現(xiàn)數(shù)據(jù)中的異常值和潛在模式4、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是5、對(duì)于一個(gè)聚類問(wèn)題,如果事先不知道聚類的類別數(shù),以下哪種方法可以幫助確定合適的類別數(shù)?()A.肘部法則B.輪廓系數(shù)C.Calinski-Harabasz指數(shù)D.以上都是6、在數(shù)據(jù)分析中,如果數(shù)據(jù)存在偏差,可能會(huì)導(dǎo)致分析結(jié)果不準(zhǔn)確。以下哪種情況可能導(dǎo)致數(shù)據(jù)偏差?()A.抽樣方法不合理B.數(shù)據(jù)錄入錯(cuò)誤C.樣本量過(guò)小D.以上都是7、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)其他相關(guān)字段的值進(jìn)行推測(cè)和修正C.忽略重復(fù)記錄,因?yàn)樗鼈儗?duì)數(shù)據(jù)分析結(jié)果影響不大D.不進(jìn)行任何數(shù)據(jù)清洗操作,直接使用原始數(shù)據(jù)進(jìn)行分析8、數(shù)據(jù)挖掘技術(shù)在發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面發(fā)揮著重要作用。假設(shè)我們要從電商網(wǎng)站的用戶購(gòu)買(mǎi)記錄中挖掘用戶的購(gòu)買(mǎi)行為模式。以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,幫助進(jìn)行商品推薦B.分類算法能夠根據(jù)已知的類別標(biāo)簽對(duì)新的數(shù)據(jù)進(jìn)行分類預(yù)測(cè)C.聚類分析將數(shù)據(jù)分為不同的組,但這些組必須事先定義好D.數(shù)據(jù)挖掘需要大量的數(shù)據(jù)和計(jì)算資源,同時(shí)結(jié)果需要進(jìn)一步的分析和驗(yàn)證9、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)不符合正態(tài)分布,以下哪種統(tǒng)計(jì)方法可能不再適用?()A.t檢驗(yàn)B.方差分析C.線性回歸D.以上都是10、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估包括準(zhǔn)確性、完整性、一致性等多個(gè)方面。假設(shè)一個(gè)數(shù)據(jù)集在準(zhǔn)確性方面表現(xiàn)良好,但在一致性方面存在問(wèn)題,可能的原因是什么?()A.數(shù)據(jù)錄入時(shí)的錯(cuò)誤B.不同數(shù)據(jù)源的數(shù)據(jù)整合不當(dāng)C.數(shù)據(jù)更新不及時(shí)D.以上原因都有可能11、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是12、數(shù)據(jù)分析過(guò)程中,數(shù)據(jù)清洗是重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗目的的說(shuō)法中,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)質(zhì)量,為后續(xù)分析提供可靠基礎(chǔ)B.統(tǒng)一數(shù)據(jù)格式和單位,使不同來(lái)源的數(shù)據(jù)能夠進(jìn)行有效的整合和比較C.數(shù)據(jù)清洗可以增加數(shù)據(jù)的數(shù)量,從而提高數(shù)據(jù)分析結(jié)果的準(zhǔn)確性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性,避免因缺失數(shù)據(jù)而影響分析結(jié)果13、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)可以幫助我們初步了解數(shù)據(jù)的特征。假設(shè)你剛剛獲得一個(gè)新的數(shù)據(jù)集,以下關(guān)于EDA的步驟,哪一項(xiàng)是最應(yīng)該首先進(jìn)行的?()A.繪制數(shù)據(jù)的直方圖和箱線圖B.計(jì)算數(shù)據(jù)的基本統(tǒng)計(jì)量,如均值、中位數(shù)等C.檢查數(shù)據(jù)的缺失值和異常值D.對(duì)數(shù)據(jù)進(jìn)行聚類分析14、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理,假設(shè)數(shù)據(jù)集中存在極端值,這些極端值可能會(huì)對(duì)后續(xù)的分析產(chǎn)生較大影響。以下哪種處理極端值的方法可能較為恰當(dāng)?()A.直接刪除包含極端值的數(shù)據(jù)點(diǎn)B.對(duì)極端值進(jìn)行縮尾或截尾處理C.將極端值替換為平均值D.不處理極端值,保留原始數(shù)據(jù)15、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究不同地區(qū)消費(fèi)者對(duì)某一產(chǎn)品的購(gòu)買(mǎi)意愿差異,以下哪種數(shù)據(jù)分析方法最為適用?()A.描述性統(tǒng)計(jì)分析B.相關(guān)性分析C.方差分析D.回歸分析二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋什么是自動(dòng)機(jī)器學(xué)習(xí)(AutoML),說(shuō)明其在數(shù)據(jù)分析中的作用和優(yōu)勢(shì),并舉例分析其應(yīng)用場(chǎng)景。2、(本題5分)闡述數(shù)據(jù)可視化中的可視化敘事,說(shuō)明如何通過(guò)數(shù)據(jù)可視化講述一個(gè)有邏輯和吸引力的故事,以傳達(dá)數(shù)據(jù)分析的結(jié)論。3、(本題5分)闡述數(shù)據(jù)分析中的可解釋性機(jī)器學(xué)習(xí)模型,如線性回歸、決策樹(shù)等的優(yōu)點(diǎn)和局限性,并說(shuō)明如何提高復(fù)雜模型的可解釋性。4、(本題5分)闡述主成分分析(PCA)的原理和用途,說(shuō)明如何通過(guò)PCA實(shí)現(xiàn)數(shù)據(jù)降維,并解釋降維對(duì)數(shù)據(jù)分析的意義。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在能源交易市場(chǎng)中,如何利用數(shù)據(jù)分析來(lái)預(yù)測(cè)價(jià)格走勢(shì)、評(píng)估市場(chǎng)風(fēng)險(xiǎn)和優(yōu)化交易策略?請(qǐng)深入探討數(shù)據(jù)的來(lái)源和處理方法,以及市場(chǎng)不確定性對(duì)分析結(jié)果的影響。2、(本題5分)在制造業(yè)的供應(yīng)鏈管理中,數(shù)據(jù)分析可以提高效率和降低成本。以某電子制造企業(yè)為例,分析如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化原材料采購(gòu)、生產(chǎn)計(jì)劃安排、物流配送,以及如何應(yīng)對(duì)供應(yīng)鏈中斷的風(fēng)險(xiǎn)和快速恢復(fù)。3、(本題5分)隨著智能制造的推進(jìn),工廠的生產(chǎn)設(shè)備運(yùn)行數(shù)據(jù)、生產(chǎn)流程數(shù)據(jù)等日益豐富。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像生產(chǎn)效率優(yōu)化、設(shè)備故障預(yù)測(cè)等,實(shí)現(xiàn)制造業(yè)的智能化升級(jí),同時(shí)思考在數(shù)據(jù)標(biāo)準(zhǔn)化難度大、工業(yè)協(xié)議多樣和行業(yè)經(jīng)驗(yàn)依賴方面的挑戰(zhàn)及應(yīng)對(duì)措施。4、(本題5分)在電信行業(yè)的套餐設(shè)計(jì)中,如何借助數(shù)據(jù)分析來(lái)了解用戶需求、消費(fèi)行為和網(wǎng)絡(luò)使用模式,以制定合理的套餐方案和定價(jià)策略,同時(shí)提高用戶滿意度和運(yùn)營(yíng)商的收益。5、(本題5分)在金融市場(chǎng)的波動(dòng)率預(yù)測(cè)中,如何運(yùn)用數(shù)據(jù)分析和統(tǒng)計(jì)模型準(zhǔn)確估計(jì)市場(chǎng)波動(dòng)率,為投資和風(fēng)險(xiǎn)管理提供依據(jù)。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某汽車制造商收集了車輛的質(zhì)量檢測(cè)數(shù)據(jù)、用戶反饋、售后服務(wù)記錄等。思考如何通過(guò)這些數(shù)據(jù)提升產(chǎn)品質(zhì)量和售后服務(wù)水平。2、(本題10分)某餐飲連鎖品牌收集了各門(mén)店的菜品銷售數(shù)據(jù)、食材采購(gòu)成本、員工工作效率等信息。分析怎樣借

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論