人工智能機器學習Deep Learning by Ian Goodfellow,Yoshua Bengio,Aaron Courville (z-lib.org)_第1頁
人工智能機器學習Deep Learning by Ian Goodfellow,Yoshua Bengio,Aaron Courville (z-lib.org)_第2頁
人工智能機器學習Deep Learning by Ian Goodfellow,Yoshua Bengio,Aaron Courville (z-lib.org)_第3頁
人工智能機器學習Deep Learning by Ian Goodfellow,Yoshua Bengio,Aaron Courville (z-lib.org)_第4頁
人工智能機器學習Deep Learning by Ian Goodfellow,Yoshua Bengio,Aaron Courville (z-lib.org)_第5頁
已閱讀5頁,還剩1749頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

DeepLearning

IanGoodfellow

YoshuaBengio

AaronCourville

Contents

Websitevii

Acknowledgmentsviii

Notationxi

1Introduction1

1.1WhoShouldReadThisBook?....................8

1.2HistoricalTrendsinDeepLearning.................11

IAppliedMathandMachineLearningBasics29

2LinearAlgebra31

2.1Scalars,Vectors,MatricesandTensors...............31

2.2MultiplyingMatricesandVectors..................34

2.3IdentityandInverseMatrices....................36

2.4LinearDependenceandSpan....................37

2.5Norms.................................39

2.6SpecialKindsofMatricesandVectors...............40

2.7Eigendecomposition..........................42

2.8SingularValueDecomposition....................44

2.9TheMoore-PenrosePseudoinverse..................45

2.10TheTraceOperator.........................46

2.11TheDeterminant...........................47

2.12Example:PrincipalComponentsAnalysis.............48

3ProbabilityandInformationTheory53

3.1WhyProaility?...........................54

i

CONTENTS

3.2RandomVariales..........................56

3.3ProailityDistriutions.......................56

3.4MarginalProaility.........................58

3.5ConditionalProaility.......................59

3.6TheChainRuleofConditionalProailities............59

3.7IndependenceandConditionalIndependence............60

3.8Expectation,VarianceandCovariance...............60

3.9CommonProailityDistriutions.................62

3.10sefulPropertiesofCommonFunctions..............67

3.11Bayes’Rule..............................70

3.12TechnicalDetailsofContinuousVariales.............71

3.13InformationTheory..........................73

3.14StructuredProailisticModels...................75

4NumericalComputation80

4.1Over?owandnder?ow.......................80

4.2PoorConditioning..........................82

4.3Gradient-BasedOptimization....................82

4.4ConstrainedOptimization......................93

4.5Example:LinearLeastSquares...................96

5MachineLearningBasics98

5.1LearningAlgorithms.........................99

5.2Capacity,Over?ttingandnder?tting...............110

5.3HyperparametersandValidationSets................120

5.4Estimators,BiasandVariance....................122

5.5MaximumLikelihoodEstimation..................131

5.6BayesianStatistics..........................135

5.7SupervisedLearningAlgorithms...................140

5.8nsupervisedLearningAlgorithms.................146

5.9StochasticGradientDescent.....................151

5.10BuildingaMachineLearningAlgorithm..............1535.11ChallengesMotivatingDeepLearning................155

IIDeepNetworks:ModernPractices166

6DeepFeedforwardNetworks168

6.1Example:LearningXOR.......................171

6.2Gradient-BasedLearning.......................177

ii

CONTENTS

6.3Hiddennits.............................191

6.4ArchitectureDesign..........................197

6.5Back-PropagationandOtherDi?erentiationAlgorithms.....204

6.6HistoricalNotes............................224

7RegularizationforDeepLearning228

7.1ParameterNormPenalties......................230

7.2NormPenaltiesasConstrainedOptimization............237

7.3Regularizationandnder-ConstrainedProlems.........239

7.4DatasetAugmentation........................240

7.5NoiseRoustness...........................242

7.6Semi-SupervisedLearning......................243

7.7Multi-TaskLearning.........................244

7.8EarlyStopping............................246

7.9ParameterTyingandParameterSharing..............253

7.10SparseRepresentations........................254

7.11BaggingandOtherEnsemleMethods...............256

7.12Dropout................................258

7.13AdversarialTraining.........................268

7.14TangentDistance,TangentProp,andManifoldTangentClassi?er270

8OptimizationforTrainingDeepModels274

8.1HowLearningDi?ersfromPureOptimization...........275

8.2ChallengesinNeuralNetworkOptimization............282

8.3BasicAlgorithms...........................294

8.4ParameterInitializationStrategies.................301

8.5AlgorithmswithAdaptiveLearningRates.............306

8.6ApproximateSecond-OrderMethods................310

8.7OptimizationStrategiesandMeta-Algorithms...........317

9ConvolutionalNetworks330

9.1TheConvolutionOperation.....................331

9.2Motivation...............................335

9.3Pooling.................................339

9.4ConvolutionandPoolingasanIn?nitelyStrongPrior.......345

9.5VariantsoftheBasicConvolutionFunction............347

9.6StructuredOutputs..........................358

9.7DataTypes..............................360

9.8E?cientConvolutionAlgorithms..................362

9.9RandomornsupervisedFeatures.................363

iii

CONTENTS

9.10TheNeuroscienti?cBasisforConvolutionalNetworks.......364

9.11ConvolutionalNetworksandtheHistoryofDeepLearning....371

10SequenceModeling:RecurrentandRecursiveNets373

10.1nfoldingComputationalGraphs..................375

10.2RecurrentNeuralNetworks.....................378

10.3BidirectionalRNNs..........................394

10.4Encoder-DecoderSequence-to-SequenceArchitectures.......396

10.5DeepRecurrentNetworks......................398

10.6RecursiveNeuralNetworks......................400

10.7TheChallengeofLong-TermDependencies.............401

10.8EchoStateNetworks.........................404

10.9LeakynitsandOtherStrategiesforMultipleTimeScales....406

10.10TheLongShort-TermMemoryandOtherGatedRNNs......408

10.11OptimizationforLong-TermDependencies.............413

10.12ExplicitMemory...........................416

11PracticalMethodology421

11.1PerformanceMetrics.........................422

11.2DefaultBaselineModels.......................425

11.3DeterminingWhethertoGatherMoreData............426

11.4SelectingHyperparameters......................427

11.5DeuggingStrategies.........................436

11.6Example:Multi-DigitNumerRecognition.............440

12Applications443

12.1Large-ScaleDeepLearning......................443

12.2ComputerVision...........................452

12.3SpeechRecognition..........................458

12.4NaturalLanguageProcessing....................461

12.5OtherApplications..........................478

IIIDeepLearningResearch486

13LinearFactorModels489

13.1ProailisticPCAandFactorAnalysis...............490

13.2IndependentComponentAnalysis(ICA)..............491

13.3SlowFeatureAnalysis........................493

13.4SparseCoding.............................496

iv

CONTENTS

13.5ManifoldInterpretationofPCA...................499

14Autoencoders502

14.1ndercompleteAutoencoders....................503

14.2RegularizedAutoencoders......................504

14.3RepresentationalPower,LayerSizeandDepth...........508

14.4StochasticEncodersandDecoders..................509

14.5DenoisingAutoencoders.......................510

14.6LearningManifoldswithAutoencoders...............515

14.7ContractiveAutoencoders......................521

14.8PredictiveSparseDecomposition..................523

14.9ApplicationsofAutoencoders....................524

15RepresentationLearning526

15.1GreedyLayer-WisensupervisedPretraining...........528

15.2TransferLearningandDomainAdaptation.............536

15.3Semi-SupervisedDisentanglingofCausalFactors.........541

15.4DistriutedRepresentation......................546

15.5ExponentialGainsfromDepth...................553

15.6ProvidingCluestoDiscovernderlyingCauses..........554

16StructuredProbabilisticModelsforDeepLearning558

16.1TheChallengeofnstructuredModeling..............559

16.2singGraphstoDescrieModelStructure.............563

16.3SamplingfromGraphicalModels..................580

16.4AdvantagesofStructuredModeling.................582

16.5LearningaoutDependencies....................582

16.6InferenceandApproximateInference................584

16.7TheDeepLearningApproachtoStructuredProailisticModels585

17MonteCarloMethods590

17.1SamplingandMonteCarloMethods................590

17.2ImportanceSampling.........................592

17.3MarkovChainMonteCarloMethods................595

17.4GisSampling............................59917.5TheChallengeofMixingetweenSeparatedModes........599

18ConfrontingthePartitionFunction605

18.1TheLog-LikelihoodGradient....................606

18.2StochasticMaximumLikelihoodandContrastiveDivergence...607

v

CONTENTS

18.3Pseudolikelihood...........................615

18.4ScoreMatchingandRatioMatching................617

18.5DenoisingScoreMatching......................619

18.6Noise-ContrastiveEstimation....................620

18.7EstimatingthePartitionFunction..................623

19ApproximateInference631

19.1InferenceasOptimization......................633

19.2ExpectationMaximization......................634

19.3MAPInferenceandSparseCoding.................635

19.4VariationalInferenceandLearning.................638

19.5LearnedApproximateInference...................651

20DeepGenerativeModels654

20.1BoltzmannMachines.........................654

20.2RestrictedBoltzmannMachines...................656

20.3DeepBeliefNetworks.........................660

20.4DeepBoltzmannMachines......................663

20.5BoltzmannMachinesforReal-ValuedData.............676

20.6ConvolutionalBoltzmannMachines.................683

20.7BoltzmannMachinesforStructuredorSequentialOutputs....685

20.8OtherBoltzmannMachines.....................686

20.9Back-PropagationthroughRandomOperations..........687

20.10DirectedGenerativeNets.......................692

20.11DrawingSamplesfromAutoencoders................711

20.12GenerativeStochasticNetworks...................714

20.13OtherGenerationSchemes......................716

20.14EvaluatingGenerativeModels....................717

20.15Conclusion...............................720

Bibliography721

Index777

vi

Website

www.deeplearning

Thisookisaccompaniedytheaovewesite.Thewesiteprovidesa

varietyofsupplementarymaterial,includingexercises,lectureslides,correctionsof

mistakes,andotherresourcesthatshouldeusefultoothreadersandinstructors.

vii

Acknowledgments

Thisbookwouldnothavebeenpossiblewithoutthecontributionsofmanypeople.

Wewouldliketothankthosewhocommentedonourproposalforthebook

andhelpedplanitscontentsandorganization:GuillaumeAlain,KyunghyunCho,

?a?larGül?ehre,DavidKrueger,HugoLarochelle,RazvanPascanuandThomas

Rohée.

Wewouldliketothankthepeoplewhoo?eredfeedbackonthecontentofthebookitself.Someo?eredfeedbackonmanychapters:MartínAbadi,Guillaume

Alain,IonAndroutsopoulos,FredBertsch,OlexaBilaniuk,UfukCanBi?ici,Matko

Bo?njak,JohnBoersma,GregBrockman,AlexandredeBrébisson,PierreLuc

Carrier,SarathChandar,PawelChilinski,MarkDaoust,OlegDashevskii,Laurent

Dinh,StephanDreseitl,JimFan,MiaoFan,MeireFortunato,FrédéricFrancis,

andodeFreitas,?a?larGül?ehre,JurgenVanGael,JavierAlonsoGarcía,

JonathanHunt,GopiJeyaram,ChingizKabytayev,LukaszKaiser,VarunKanade,

AsifullahKhan,AkielKhan,JohnKing,DiederikP.Kingma,YannLeCun,Rudolf

Mathey,MatíasMattamala,AbhinavMaurya,KevinMurphy,OlegMürk,Roman

ovak,AugustusQ.Odena,SimonPavlik,KarlPichotta,EddiePierce,KariPulli,

RousselRahman,TapaniRaiko,AnuragRanjan,JohannesRoith,MihaelaRosca,

HalisSak,CésarSalgado,GrigorySapunov,YoshinoriSasaki,MikeSchuster,

JulianSerban,irShabat,KenShirri?,AndreSimpelo,ScottStanley,David

Sussillo,IlyaSutskever,CarlesGeladaSáez,GrahamTaylor,ValentinTolmer,

MassimilianoTomassoli,AnTran,ShubhenduTrivedi,AlexeyUmnov,VincentVanhoucke,MarcoVisentini-Scarzanella,MartinVita,DavidWarde-Farley,Dustin

Webb,KelvinXu,WeiXue,KeYang,LiYao,ZygmuntZaj?candOzan?a?layan.

Wewouldalsoliketothankthosewhoprovideduswithusefulfeedbackon

individualchapters:

?otation:ZhangYuanhang.

?Chapter1,Introduction:YusufAkgul,SebastienBratieres,SamiraEbrahimi,

viii

CONTENTS

CharlieGorichanaz,BrendanLoudermilk,EricMorris,CosminParvulescu

andAlfredoSolano.

?Chapter2,LinearAlgebra:AmjadAlmahairi,ikolaBani?,KevinBennett,

PhilippeCastonguay,OscarChang,EricFosler-Lussier,AndreyKhalyavin,

SergeyOreshkov,IstvánPetrás,DennisPrangle,ThomasRohée,Gitanjali

GulveSehgal,ColbyToland,AlessandroVitaleandBobWelland.

?Chapter3,ProbabilityandInformationTheory:JohnPhilipAnderson,Kai

Arulkumaran,VincentDumoulin,RuiFa,StephanGouws,ArtemOboturov,

AnttiRasmus,AlexeySurkovandVolkerTresp.

?Chapter4,umericalComputation:TranLamAnIanFischerandHu

Yuhuang.

?Chapter5,MachineLearningBasics:DzmitryBahdanau,JustinDomingue,

ikhilGarg,MakotoOtsuka,BobPepin,PhilipPopien,EmmanuelRayner,

PeterShepard,Kee-BongSong,ZhengSunandAndyWu.

?Chapter6,DeepFeedforwardetworks:UrielBerdugo,FabrizioBottarel,

ElizabethBurl,IshanDurugkar,Je?Hlywa,JongWookKim,DavidKrueger

andAdityaKumarPraharaj.

?Chapter7,RegularizationforDeepLearning:MortenKolb?k,KshitijLauria,

InkyuLee,SunilMohan,HaiPhongPhanandJoshuaSalisbury.

?Chapter8,OptimizationforTrainingDeepModels:MarcelAckermann,Peter

Armitage,RowelAtienza,AndrewBrock,TeganMaharaj,JamesMartens,

KashifRasul,KlausStroblandicholasTurner.

?Chapter9,Convolutionaletworks:MartínArjovsky,EugeneBrevdo,Kon-

stantinDivilov,EricJensen,MehdiMirza,AlexPaino,MarjorieSayer,Ryan

StoutandWentaoWu.

?Chapter10,SequenceModeling:RecurrentandRecursiveets:G?k?en

Eraslan,StevenHickson,RazvanPascanu,LorenzovonRitter,RuiRodrigues,

DmitriySerdyuk,DongyuShiandKaiyuYang.

?Chapter11,PracticalMethodology:DanielBeckstein.

?Chapter12,Applications:GeorgeDahl,VladimirekrasovandRibana

Roscher.

?Chapter13,LinearFactorModels:JayanthKoushik.

ix

CONTENTS

?Chapter15,RepresentationLearning:KunalGhosh.

?Chapter16,StructuredProbabilisticModelsforDeepLearning:MinhLê

andAntonVarfolom.

?Chapter18,ConfrontingthePartitionFunction:SamBowman.

?Chapter19,ApproximateInference:YujiaBao.

?Chapter20,DeepGenerativeModels:icolasChapados,DanielGalvez,

WenmingMa,FadyMedhat,ShakirMohamedandGrégoireMontavon.

?Bibliography:LukasMichelbacherandLeslie.Smith.

Wealsowanttothankthosewhoallowedustoreproduceimages,?guresor

datafromtheirpublications.Weindicatetheircontributionsinthe?gurecaptionsthroughoutthetext.

WewouldliketothankLuWangforwritingpdf2htmlEX,whichweusedto

makethewebversionofthebook,andforo?eringsupporttoimprovethequality

oftheresultingHTML.

WewouldliketothankIan’swifeDanielaFloriGoodfellowforpatiently

supportingIanduringthewritingofthebookaswellasforhelpwithproofreading.

WewouldliketothanktheGoogleBrainteamforprovidinganintellectualenvironmentwhereIancoulddevoteatremendousamountoftimetowritingthis

bookandreceivefeedbackandguidancefromcolleagues.Wewouldespeciallylike

tothankIan’sformermanager,GregCorrado,andhiscurrentmanager,Samy

Bengio,fortheirsupportofthisproject.Finally,wewouldliketothankGeo?rey

Hintonforencouragementwhenwritingwasdi?cult.

x

Notation

Thissectionprovidesaconcisereferencedescribingthenotationusedthroughout

thisbook.Ifyouareunfamiliarwithanyofthecorrespondingmathematical

concepts,wedescribemostoftheseideasinchapters2–4.

NumbersandArrays

aAscalar(integerorreal)

aAvector

AAmatrix

AAtensor

InIdentitymatrixwithnrowsandncolumns

IIdentitymatrixwithdimensionalityimpliedby

context

e(i)Standardbasisvector[0,...,0,1,0,...,0]witha

1atpositioni

diag(a)Asquare,diagonalmatrixwithdiagonalentries

givenbya

aAscalarrandomvariable

aAvector-valuedrandomvariable

AAmatrix-valuedrandomvariable

xi

CONTENTS

SetsandGraphs

AAset

RThesetofrealnumbers

{0,1}Thesetcontaining0and1

{0,1,...,n}Thesetofallintegersbetween0andn

[a,b]Therealintervalincludingaandb

(a,b]Therealintervalexcludingabutincludingb

A\BSetsubtraction,i.e.,thesetcontainingtheele-

mentsofAthatarenotinB

GAgraph

PaG(xi)TheparentsofxiinG

Indexing

aiElementiofvectora,withindexingstartingat1

a?

iAllelementsofvectoraexceptforelementi

Ai,jElementi,jofmatrixA

Ai,:RowiofmatrixA

A:,iColumniofmatrixA

Ai,j,kElement(i,j,k)ofa3-DtensorA

A:,:,i2-Dsliceofa3-Dtensor

aiElementioftherandomvectora

LinearAlgebraOperations

ATransposeofmatrixA

A+Moore-PenrosepseudoinverseofA

ABElement-wise(Hadamard)productofAandB

det(A)DeterminantofA

xii

CONTENTS

dy

dx

Calculus

Derivativeofywithrespecttox

?y

?x

Partialderivativeofywithrespecttox

?xyGradientofywithrespecttox

?XyMatrixderivativesofywithrespecttoX

?XyTensorcontainingderivativesofywithrespectto

X

?f

JacobianmatrixJ∈

?x

Rm×noff:Rn→Rm2

?xf(x)orH(f)(x)TheHessianmatrixoffatinputpointx

f(x)dxDe?niteintegralovertheentiredomainofx

f(x)dxDe?niteintegralwithrespecttoxoverthesetSS

ProbabilityandInformationTheory

a⊥bTherandomvariablesaandbareindependent

a⊥b|cTheyareconditionallyindependentgivenc

P(a)Aprobabilitydistributionoveradiscretevariable

p(a)Aprobabilitydistributionoveracontinuousvari-

able,oroveravariablewhosetypehasnotbeen

speci?ed

a~PRandomvariableahasdistributionPEx~

P[f(x)]orEf(x)Expectationoff(x)withrespecttoP(x)

Var(f(x))Varianceoff(x)underP(x)

Cov(f(x),g(x))Covarianceoff(x)andg(x)underP(x)

H(x)Shannonentropyoftherandomvariablex

DKL(PQ)Kullback-LeiblerdivergenceofPandQ

N(x;μ,Σ)Gaussiandistributionoverxwithmeanμand

covarianceΣ

xiii

CONTENTS

Functions

f:A→BThefunctionfwithdomainandrange

AB

f?gCompositionofthefunctionsfandg

f(x;θ)Afunctionofxparametrizedbyθ.(Sometimes

wewritef(x)andomittheargumentθtolightennotation)

logxaturallogarithmofx

1

σ(x)Logisticsigmoid,

1+exp(?x)ζ(x)Softplus,log(1+exp(x))

pLpnormofx

||x||

||x||L

2normofx

x+Positivepartofx,i.e.,max(0,x)

1conditionis1iftheconditionistrue,0otherwise

Sometimesweuseafunctionfwhoseargumentisascalarbutapplyittoa

vector,matrix,ortensorf(x),f(X),orf(X).Thisdenotestheapplicationofftothearrayelement-wise.Forexample,ifC=σ(X),thenCi,j,k=σ(Xi,j,k)forall

validvaluesofi,jandk.

DatasetsandDistributions

pdataThedatageneratingdistribution

p?dataTheempiricaldistributionde?nedbythetraining

set

XAsetoftrainingexamples

x(i)Thei-thexample(input)fromadataset

y(i)ory(i)Thetargetassociatedwithx(i)forsupervisedlearn-

ing

XThem×nmatrixwithinputexamplex

Xi,:

xiv

Chapter1

Introduction

Inventorshavelongdreamedofcreatingmachinesthatthink.Thisdesiredates

backtoatleastthetimeofancientGreece.Themythical?guresPygmalion,Daedalus,andHephaestusmayallbeinterpretedaslegendaryinventors,and

Galatea,Talos,andPandoramayallberegardedasarti?ciallife(OvidandMartin,

2004;Sparkes,1996;Tandy,1997).

Whenprogrammablecomputerswere?rstconceived,peoplewonderedwhether

suchmachinesmightbecomeintelligent,overahundredyearsbeforeonewas

built(Lovelace,1842).Today,arti?cialintelligence(AI)isathriving?eldwith

manypracticalapplicationsandactiveresearchtopics.Welooktointelligentsoftwaretoautomateroutinelabor,understandspeechorimages,makediagnoses

inmedicineandsupportbasicscienti?cresearch.

Intheearlydaysofarti?cialintelligence,the?eldrapidlytackledandsolved

problemsthatareintellectuallydi?cultforhumanbeingsbutrelativelystraight-

forwardforcomputers—problemsthatcanbedescribedbyalistofformal,math-

ematicalrules.Thetruechallengetoarti?cialintelligenceprovedtobesolving

thetasksthatareeasyforpeopletoperformbuthardforpeopletodescribe

formally—problemsthatwesolveintuitively,thatfeelautomatic,likerecognizingspokenwordsorfacesinimages.

Thisbookisaboutasolutiontothesemoreintuitiveproblems.Thissolutionis

toallowcomputerstolearnfromexperienceandunderstandtheworldintermsofa

hierarchyofconcepts,witheachconceptde?nedintermsofitsrelationtosimpler

concepts.Bygatheringknowledgefromexperience,thisapproachavoidstheneed

forhumanoperatorstoformallyspecifyalloftheknowledgethatthecomputer

needs.Thehierarchyofconceptsallowsthecomputertolearncomplicatedconceptsbybuildingthemoutofsimplerones.Ifwedrawagraphshowinghowthese

1

CHAPTER1.INTRODUCTION

conceptsarebuiltontopofeachother,thegraphisdeep,withmanylayers.orthisreason,wecallthisapproachtoAIdeeplearning.

ManyoftheearlysuccessesofAItookplaceinrelativelysterileandformal

environmentsanddidnotreuirecomputerstohavemuchknowledgeabout

theworld.orexample,IBM’sDeepBluechess-playingsystemdefeatedworld

championGarryKasparovin1997(Hsu,2002).Chessisofcourseaverysimpleworld,containingonlysixty-fourlocationsandthirty-twopiecesthatcanmove

inonlyrigidlycircumscribedways.Devisingasuccessfulchessstrategyisa

tremendousaccomplishment,butthechallengeisnotduetothedi?cultyof

describingthesetofchesspiecesandallowablemovestothecomputer.Chess

canbecompletelydescribedbyaverybrieflistofcompletelyformalrules,easily

providedaheadoftimebytheprogrammer.

Ironically,abstractandformaltasksthatareamongthemostdi?cultmentalundertakingsforahumanbeingareamongtheeasiestforacomputer.Computers

havelongbeenabletodefeateventhebesthumanchessplayer,butareonly

recentlymatchingsomeoftheabilitiesofaveragehumanbeingstorecognizeobjects

orspeech.Aperson’severydaylifereuiresanimmenseamountofknowledge

abouttheworld.Muchofthisknowledgeissubjectiveandintuitive,andtherefore

di?culttoarticulateinaformalway.Computersneedtocapturethissame

knowledgeinordertobehaveinanintelligentway.Oneofthekeychallengesin

arti?cialintelligenceishowtogetthisinformalknowledgeintoacomputer.

Severalarti?cialintelligenceprojectshavesoughttohard-codeknowledgeabout

theworldinformallanguages.Acomputercanreasonaboutstatementsinthese

formallanguagesautomaticallyusinglogicalinferencerules.Thisisknownasthe

knowledgebaseapproachtoarti?cialintelligence.Noneoftheseprojectshasled

toamajorsuccess.OneofthemostfamoussuchprojectsisCyc(LenatandGuha,

1989).Cycisaninferenceengineandadatabaseofstatementsinalanguage

calledCycL.Thesestatementsareenteredbyasta?ofhumansupervisors.Itisan

unwieldyprocess.Peoplestruggletodeviseformalruleswithenoughcomplexity

toaccuratelydescribetheworld.orexample,Cycfailedtounderstandastory

aboutapersonnamedredsha

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論