




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025年貴州省畢節(jié)市織金一中高三3月模擬數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某設(shè)備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設(shè)備報廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年2.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.3.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.4.已知,滿足約束條件,則的最大值為A. B. C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標(biāo)為()A. B. C. D.6.下列四個結(jié)論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.47.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件8.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標(biāo)原點若,則直線與的斜率之積為()A. B. C. D.9.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.10.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.11.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.12.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.14.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.15.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.16.函數(shù)的定義域是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若不等式有解,求實數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實數(shù),,滿足,證明:.18.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.19.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調(diào),證明:.20.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.21.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標(biāo)為,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.本題考查回歸直線過樣本中心點、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.2.A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A此題考查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.3.D【解析】
建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價于在直角坐標(biāo)系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動點軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.4.D【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當(dāng)直線經(jīng)過點時最大,所以,故選D.本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.5.C【解析】
利用復(fù)數(shù)的運算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對應(yīng)的點的坐標(biāo)為(﹣1,2),故選:C本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.6.C【解析】
由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時,可得成立,當(dāng)時,只需滿足,所以“”是“”成立的充分不必要條件.本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識點的應(yīng)用,逐項判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.7.C【解析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計算能力,屬于基礎(chǔ)題.8.A【解析】
設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點,先設(shè)A,B,,再求切線PA,PB方程,求點P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點P的坐標(biāo),計算量就大一些.9.D【解析】
先用復(fù)數(shù)的除法運算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.本題考查復(fù)數(shù)的基本概念和基本運算,屬于基礎(chǔ)題.10.A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.11.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.12.D【解析】
以BC的中點為坐標(biāo)原點,建立直角坐標(biāo)系,可得,設(shè),運用向量的坐標(biāo)表示,求得點A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補(bǔ)形法的運用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過補(bǔ)形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構(gòu)成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.14.20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構(gòu)成公差為的等差數(shù)列,偶數(shù)項構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時,,.當(dāng)時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關(guān)鍵.15.或【解析】
函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負(fù)進(jìn)行討論.16.【解析】
由于偶次根式中被開方數(shù)非負(fù),對數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】
(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當(dāng)且僅當(dāng)時等號成立.∴,即.∵.當(dāng)且僅當(dāng),,時等號成立.∴,即成立.此題考查不等式的證明,注意定值乘變化的靈活應(yīng)用,屬于較易題目.18.(1);(2)證明見詳解.【解析】
(1)將不等式的解集用表示出來,結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當(dāng)且僅當(dāng),,,等號成立.本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.19.(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解析】
(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點存在性定理判斷出有唯一零點.(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過證明,證得成立.【詳解】(1)∵函數(shù)的定義域為,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個零點:∵,所以函數(shù)在區(qū)間內(nèi)有零點,∵,函數(shù)在區(qū)間上沒有零點,故函數(shù)只有一個零點.(2)證明:函數(shù),則當(dāng)時,,不符合題意;當(dāng)時,令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個零點,即,所以,且,即兩邊取自然對數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20.(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當(dāng)時,,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.21.(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分房協(xié)議書范文
- 集體耕地承包協(xié)議書
- 代簽離婚協(xié)議合同樣本
- 書銷售返利合同標(biāo)準(zhǔn)文本
- 安裝技術(shù)方案及質(zhì)量保證措施
- 做燈具合同樣本
- 代理建材經(jīng)銷業(yè)務(wù)合同樣本
- 部編版五年級語文下冊23-鳥的天堂
- 企業(yè)托管員工合同樣本
- 控?zé)熤黝}班會課教案
- 2025年遼寧省遼漁集團(tuán)招聘筆試參考題庫含答案解析
- 《員工招聘與選拔》課件
- 南昌起義模板
- 【MOOC】體育舞蹈與文化-大連理工大學(xué) 中國大學(xué)慕課MOOC答案
- 接處警流程培訓(xùn)
- 2024年商丘職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫附答案
- 《園林植物病蟲害》課件
- 空調(diào)維保服務(wù)投標(biāo)方案 (技術(shù)方案)
- 醫(yī)用氣體安裝工程作業(yè)安全技術(shù)交底
- 西方文論概覽(第二版)-第一章-課件
- T-CSPSTC 55-2020 隧道襯砌質(zhì)量無損檢測技術(shù)規(guī)程
評論
0/150
提交評論