




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
3.2.2奇偶性第1課時
奇偶性的概念學(xué)習(xí)目標(biāo)素養(yǎng)目標(biāo)學(xué)科素養(yǎng)1、結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義(難點).2、掌握判斷函數(shù)奇偶性的方法,了解奇偶性與函數(shù)圖象對稱性之間的關(guān)系(重點).3、會利用函數(shù)的奇偶性解決簡單問題(重點).1、數(shù)學(xué)抽象2、數(shù)學(xué)運算3、直觀想象自主學(xué)習(xí)探究一:觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)如何用符號語言描述這一特征?f(x)=x2g(x)=2-|x|
圖象關(guān)于y軸對稱自主學(xué)習(xí)可以發(fā)現(xiàn):當(dāng)x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相等f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-x)=f(x)?對于R內(nèi)任意的一個x,都有f(-x)=(-x)2=x2=f(x)
這時稱函數(shù)f(x)=x2
為偶函數(shù)。
這就是用符號語言描述圖象關(guān)于y軸對稱函數(shù)值是如何體現(xiàn)這一特征的?自主學(xué)習(xí)一.偶函數(shù)
一般地,設(shè)函數(shù)f(x)的定義域為I,如果任意x∈I,都有-x∈I,且f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
例如,函數(shù)都是偶函數(shù),它們的圖象分別如下圖(1)、(2)所示.舉幾個偶函數(shù)的例子?自主學(xué)習(xí)探究二:觀察下圖,思考并討論以下問題:f(x)=xg(x)=1/x(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)如何用符號語言描述這一特征?自主學(xué)習(xí)f(-3)=-3=-f(3)f(-2)=-2=-f(2)f(-1)=-1=-f(1)
(1)圖象關(guān)于原點對稱
實際上,對于R內(nèi)任意的一個x,都有f(-x)=-x=-(x)=-f(x)
(2)當(dāng)x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值也是一對相反數(shù)自主學(xué)習(xí)注意:
1、函數(shù)的奇偶性是函數(shù)的整體性質(zhì)(單調(diào)性是局部性質(zhì))2、由函數(shù)的奇偶性定義可知,任意x∈I,都有-x∈I(即定義域關(guān)于原點對稱).
一般地,設(shè)函數(shù)f(x)的定義域為I,如果任意x∈I,都有-x∈I,且f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).
3、若f(x)為奇函數(shù),0∈I,一定有f(0)=0.二.奇函數(shù)
自主學(xué)習(xí)對于一個函數(shù)來說,它的奇偶性有以下可能:
奇函數(shù)偶函數(shù)既是奇函數(shù)又是偶函數(shù);既不是奇函數(shù)也不是偶函數(shù).三.分類
小試牛刀××××小試牛刀
題型一
函數(shù)奇偶性的判斷經(jīng)典例題
題型一
函數(shù)奇偶性的判斷經(jīng)典例題
題型一
函數(shù)奇偶性的判斷經(jīng)典例題經(jīng)典例題總結(jié)
題型一
函數(shù)奇偶性的判斷經(jīng)典例題總結(jié)
題型一
函數(shù)奇偶性的判斷跟蹤訓(xùn)練1經(jīng)典例題
題型一
函數(shù)奇偶性的判斷經(jīng)典例題
題型一
函數(shù)奇偶性的判斷經(jīng)典例題
題型二
奇、偶函數(shù)的圖象問題經(jīng)典例題總結(jié)利用奇、偶函數(shù)的圖象求解問題1.依據(jù):奇函數(shù)?圖象關(guān)于原點對稱,偶函數(shù)?圖象關(guān)于y軸對稱.2.求解:根據(jù)奇、偶函數(shù)圖象的對稱性可以解決諸如求函數(shù)值或畫出奇偶函數(shù)圖象的問題.
題型二
奇、偶函數(shù)的圖象問題跟蹤訓(xùn)練2經(jīng)典例題
題型二
奇、偶函數(shù)的圖象問題經(jīng)典例題點撥
題型三
函數(shù)奇偶性的應(yīng)用角度1:利用函數(shù)的奇偶性求值經(jīng)典例題
題型三
函數(shù)奇偶性的應(yīng)用跟蹤訓(xùn)練3經(jīng)典例題
題型三
函數(shù)奇偶性的應(yīng)用經(jīng)典例題點撥角度2:利用奇偶性求參數(shù)
題型三
函數(shù)奇偶性的應(yīng)用經(jīng)典例題
題型三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商務(wù)合同協(xié)議翻譯
- 合同中安全協(xié)議
- 紋眉客戶合同協(xié)議
- 新的安全協(xié)議合同書
- 沒購房合同怎么簽訂協(xié)議
- 供貨協(xié)議合同價格調(diào)整
- 合同條件更改協(xié)議
- 車子承包協(xié)議合同
- 木材回收合同協(xié)議
- 合同不續(xù)約協(xié)議
- 教育心理學(xué)-形考作業(yè)2(第四至六章)-國開-參考資料
- 科大訊飛財務(wù)報表分析報告
- 心房顫動診斷和治療中國指南(2023) 解讀
- 2024年高考生物三年高考真題及模擬題分類匯編專題16實驗與探究含解析
- 地形圖測繪報告
- 《新媒體運營》高職新媒體運營全套教學(xué)課件
- 混凝土面板堆石壩工程中溢洪道水力設(shè)計計算書
- 參觀河南省博物院
- 2024水電站股權(quán)轉(zhuǎn)讓協(xié)議
- 可穿戴式設(shè)備安全可靠性技術(shù)規(guī)范 頭戴式設(shè)備
- 《網(wǎng)絡(luò)營銷》-課件:33病毒營銷
評論
0/150
提交評論