2022貝葉斯網(wǎng)絡(luò)技術(shù)_第1頁
2022貝葉斯網(wǎng)絡(luò)技術(shù)_第2頁
2022貝葉斯網(wǎng)絡(luò)技術(shù)_第3頁
2022貝葉斯網(wǎng)絡(luò)技術(shù)_第4頁
2022貝葉斯網(wǎng)絡(luò)技術(shù)_第5頁
已閱讀5頁,還剩52頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

BayesianFrequentistvs.vs.Frequentist(頻率主義者):概率是長期的預(yù)期出現(xiàn)頻率P(A)=n/N,wherenisthenumberoftimeseventAoccursinNopportunities.“某事發(fā)生的概率是0.10.1是在無窮多樣本的極限發(fā)生第三次世界大戰(zhàn)的概率是多少Bayesian:degreeofbelief.Itisameasureoftheplausibility(似然性)ofaneventgivenincompleteProbabilityProbabilityisarigorousformalismforuncertainJointprobabilitydistributionspecifiesprobabilityofeveryatomicQueriescanbeansweredbysummingoveratomicFornontrivialdomains,wemustfindawaytoreducethejointsizeIndependenceandconditionalindependenceprovidethetools/ConditionalAandBareindependentP(A|B)= orP(B|A)= orP(A,B)P(A)AisconditionallyindependentofBgivenP(A|B,C)=P(A|ConditionalindependenceisourmostbasicandrobustformofknowledgeaboutuncertainProbabilityProbabilitytheorycanbeexpressedintermsoftwosimpleequations概率理論可使用兩個簡單線性方程來SumRule(加法規(guī)則ProductRule(乘法規(guī)則Graphicalmodels(概率圖模型BayesianInference(推導(dǎo))inBayesianAlsocalledTheyaugmentanalysisinsteadofusingWhatisaConsistsofnodes(alsocalledvertices)andlinks(alsocallededgesorarcs)每個節(jié)點(diǎn)表示一個隨機(jī)變量(or一組隨機(jī)變GraphicalModelsinacomplexsystemisbuiltbycombiningsimplerparts.WhyareGraphicalModels使每個部分連接起來確保系統(tǒng)作為一個整體是一提供模型到數(shù)據(jù)的連接方法圖理論方面提供bywhichhumanscanmodelhighly-interactingsetsofvariablesthatlendsitselfnaturallytodesigningefficientgeneral-purpose(通用的)algorithmsGraphicalmodels:mixturemodels(混合模型)factoranalysis(因子分析),hiddenMarkovmodels,Kalmanfilters(卡爾曼濾波器),etc.優(yōu)勢ProvidesnaturalframeworkfordesigningInsightsintopropertiesofmodelConditionalindependencepropertiesbyinspectinggraph

MorepopularinAI

Markovrandom(馬爾科夫隨機(jī)場MorepopularinVisionandphysicsBayesianasetofnodes,oneperadirected(有向)acyclic(無環(huán))graph(link"directaconditionaldistributionforeachnodegivenitsP(Xi|Parents(Xi))—Inthesimplestcaseconditionaldistributionrepresentedasaconditionalprobabilitytable條件概率表(CPT)givingthedistributionoverXiforeachcombinationofparentvaluesTopology(拓?fù)浣Y(jié)構(gòu))ofnetworkencodesconditionalindependenceassertions:Weather獨(dú)立于其他變量ToothacheandCatchareconditionallyindependentgivenCavityVariablesBurglary(入室行竊)Alarm,JohnCalls,網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)反映出因果關(guān)系A(chǔ)burglarcansetthealarmAnearthquakecansetthealarmThealarmcancauseMarytoThealarmcancauseJohntoExampleCompactness(緊致性ACPTforBooleanXiwithkBooleanparentshas2krowsforthecombinationsofparentvaluesEachrowrequiresonenumberpforXi=(thenumberforXi=falseisjust1-Ifeachvariablehasnomorethankparents,thecompletenetworkrequiresO(n·2k)numbersI.e.,growslinearlywithn,vs.O(2n)forthefulljointdistributionForburglarynet,1+1+4+2+2=10numbers(vs.25-1=31)GlobalGlobalsemantics(全局語義Thefulljointdistributionisdefinedastheproductofthelocalconditionaldistributions:Thefulljointdistributionisdefinedastheproductofthelocalconditionaldistributions:LocalLocalsemantics:eachnodeisconditionallyindependentofitsnondescendants(非后代)givenitsparentsTheorem:Local globalCausalChainsIsXindependentofZgivenEvidencealongthechain“blocks”theCommonCause另一個基礎(chǔ)的形態(tài):twoeffectsofthesamecauseAreXandZAreXandZindependentgivenObservingthecauseblocksinfluencebetweeneffects.CommonEffect最后一種配置形態(tài)twocausesofoneeffect(v-structures)AreXandZYes:remembertheballgameandtheraincausingtraffic,nocorrelation?AreXandZindependentgivenNo:rememberthatseeingtrafficputtherainandtheballgameincompetition?ThisisbackwardsfromtheotherObservingtheeffectenablesinfluence NeedamethodsuchthataseriesoflocallytestableassertionsofconditionalindependenceguaranteestherequiredglobalChooseanorderingofvariablesX1,…Fori=1toaddXitotheselectparentsfromX1,…,Xi-1suchP(Xi|Parents(Xi))=P(Xi|X1,...Xi-該父親選擇保證了全局語義ExampleExample(CausalmodelsandconditionalindependenceseemhardwiredforNetworkislesscompact:1+2+4+2+4=13numbers因果關(guān)系當(dāng)貝葉斯網(wǎng)絡(luò)反映真正的因果模式時Oftensimpler(nodeshavefewerOfteneasiertothinkOfteneasiertoelicitfromexperts(專家BNs有時無因果關(guān)系的網(wǎng)絡(luò)是存在的(especiallyifvariablesaremissing)箭頭的真正含義是什么TopologymayhappentoencodecausalTopologyreallyencodesconditionalInferenceinBayesian簡單查詢計算后驗(yàn)概率e.g.P(NoGas|Gauge油表=empty聯(lián)合查詢P(Xi,Xj|E=e)=P(Xi|E=e)P(Xj|最優(yōu)決策:decisionnetworksincludeutilityinformationprobabilisticinferencerequiredforP(outcome|action,evidence)EvaluationVariableelimination(變量消元):carryoutsummationsright-to-leftstoringintermediateresults(factors:因子)toavoidSinglyconnectednetworks單聯(lián)通網(wǎng)絡(luò)(orpolytrees多樹anytwonodesareconnectedbyatmostone(undirected)timeandspacecostofvariableeliminationareMultiplyconnectednetworks多聯(lián)通網(wǎng)絡(luò)canreduce3SATtoexactinference?NP-equivalenttocounting3SATmodels?#P-Example:Na?veBayesNa?veBayesTotalnumberofparameters(參數(shù))islinearinExample:Example:一個簡單些簡單的特征來嘗試識別垃圾郵件.我們先考慮兩CapsFreee.g.:amessagewiththesubjectheader“NEWMORTGAGERATE“islikelytobespam.Similarly,for“MoneyforFree”,“FREElunch”,etc.模型的構(gòu)建基于以下三個隨機(jī)變量Caps,FreeandSpam,eachofwhichtakeonthevaluesY(forYes)orN(forNo)Caps=YifandonlyifthesubjectofthemessagedoescontainlowercaseFree=Yifandonlyiftheword`free'appearsinthe(lettercaseisSpam=YifandonlyifthemessageisP(Free,Caps,Spam)=P(Spam)P(Caps|Spam)P(Free,Caps,Spam)=P(Spam)P(Caps|P(Free|Example:Example:Learningtoclassify模型包含先驗(yàn)概率P(Category)P(wordP(Category=c)isestimatedasthefractionofalldocumentsthatareofcategorycP(wordi=true|Category=c)isestimatedasthefractionofdocumentsofcategorycthatcontainwordiTwentyGiven1000trainingdocumentsfromeachgroup.LearntoclassifynewdocumentsaccordingtowhichnewsgroupitcamefromNa?veBayes:89%classificationLearningCurvefor20Example:ADigitNa?veBayesfor簡單版本一種特征ijforeachgridposition可能的特征值是onoff基于圖像中像素的亮度是否大于或小每一個輸入映射到一個特征向量Here:lotsoffeatures,eachisbinaryNa?veBayes

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論