




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§3.1導(dǎo)數(shù)的概念及其意義、導(dǎo)數(shù)的運(yùn)算課標(biāo)要求1.了解導(dǎo)數(shù)的概念、掌握基本初等函數(shù)的導(dǎo)數(shù).2.通過(guò)函數(shù)圖象,理解導(dǎo)數(shù)的幾何意義.3.能夠用導(dǎo)數(shù)公式和導(dǎo)數(shù)的運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù).知識(shí)梳理1.導(dǎo)數(shù)的概念(1)函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)記作________或____________.f′(x0)=eq\o(lim,\s\do4(Δx→0))eq\f(Δy,Δx)=__________________________________.(2)函數(shù)y=f(x)的導(dǎo)函數(shù)(簡(jiǎn)稱導(dǎo)數(shù))f′(x)=y(tǒng)′=eq\o(lim,\s\do4(Δx→0))eq\f(fx+Δx-fx,Δx).2.導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)的幾何意義就是曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線的________,相應(yīng)的切線方程為________________________.3.基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)導(dǎo)函數(shù)f(x)=c(c為常數(shù))f′(x)=__________f(x)=xα(α∈R,且α≠0)f′(x)=__________f(x)=sinxf′(x)=__________f(x)=cosxf′(x)=__________f(x)=ax(a>0,且a≠1)f′(x)=__________f(x)=exf′(x)=__________f(x)=logax(a>0,且a≠1)f′(x)=__________f(x)=lnxf′(x)=__________4.導(dǎo)數(shù)的運(yùn)算法則若f′(x),g′(x)存在,則有[f(x)±g(x)]′=____________;[f(x)g(x)]′=________________________;eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′=eq\f(f′xgx-fxg′x,[gx]2)(g(x)≠0);[cf(x)]′=____________.5.復(fù)合函數(shù)的定義及其導(dǎo)數(shù)復(fù)合函數(shù)y=f(g(x))的導(dǎo)數(shù)與函數(shù)y=f(u),u=g(x)的導(dǎo)數(shù)間的關(guān)系為y′x=____________,即y對(duì)x的導(dǎo)數(shù)等于y對(duì)u的導(dǎo)數(shù)與u對(duì)x的導(dǎo)數(shù)的乘積.常用結(jié)論1.在點(diǎn)處的切線與過(guò)點(diǎn)的切線的區(qū)別(1)在點(diǎn)處的切線,該點(diǎn)一定是切點(diǎn),切線有且僅有一條.(2)過(guò)點(diǎn)的切線,該點(diǎn)不一定是切點(diǎn),切線至少有一條.2.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,fx)))′=eq\f(-f′x,[fx]2)(f(x)≠0).自主診斷1.判斷下列結(jié)論是否正確.(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)f′(x0)是函數(shù)y=f(x)在x=x0附近的平均變化率.()(2)與曲線只有一個(gè)公共點(diǎn)的直線一定是曲線的切線.()(3)f′(x0)=[f(x0)]′.()(4)(e-x)′=-e-x.()2.若函數(shù)f(x)=3x+sin2x,則()A.f′(x)=3xln3+2cos2xB.f′(x)=3x+2cos2xC.f′(x)=eq\f(3x,ln3)+cos2xD.f′(x)=eq\f(3x,ln3)-2cos2x3.(選擇性必修第二冊(cè)P70T7改編)曲線y=eq\f(1,2)x2-2在點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(1,-\f(3,2)))處的切線的傾斜角是________.4.(選擇性必修第二冊(cè)P82T11改編)設(shè)曲線y=e2ax在點(diǎn)(0,1)處的切線與直線2x-y+1=0垂直,則a的值為________.題型一導(dǎo)數(shù)的運(yùn)算例1(1)(多選)下列求導(dǎo)正確的是()A.[(3x+5)3]′=9(3x+5)2B.(x3lnx)′=3x2lnx+x2C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2sinx,x2)))′=eq\f(2xcosx+4sinx,x3)D.(ln2x)′=eq\f(1,2x)(2)(2023·河南聯(lián)考)已知函數(shù)f(x)滿足f(x)=2f′(1)lnx+eq\f(x,e)(f′(x)為f(x)的導(dǎo)函數(shù)),則f(e)等于()A.e-1 B.eq\f(2,e)+1C.1 D.-eq\f(2,e)+1跟蹤訓(xùn)練1(多選)下列命題正確的是()A.若f(x)=xsinx-cosx,則f′(x)=sinx-xcosx+sinxB.設(shè)函數(shù)f(x)=xlnx,若f′(x0)=2,則x0=eC.已知函數(shù)f(x)=3x2ex,則f′(1)=12eD.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)=x2+3xf′(2)+lnx,則f′(2)=-eq\f(9,4)題型二導(dǎo)數(shù)的幾何意義命題點(diǎn)1求切線方程例2(1)(2023·全國(guó)甲卷)曲線y=eq\f(ex,x+1)在點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(e,2)))處的切線方程為()A.y=eq\f(e,4)x B.y=eq\f(e,2)xC.y=eq\f(e,4)x+eq\f(e,4) D.y=eq\f(e,2)x+eq\f(3e,4)(2)(2022·新高考全國(guó)Ⅱ)曲線y=ln|x|過(guò)坐標(biāo)原點(diǎn)的兩條切線的方程為________________,__________________.命題點(diǎn)2求參數(shù)的值(范圍)例3(1)(2024·瀘州模擬)若直線y=kx+1為曲線y=lnx的一條切線,則實(shí)數(shù)k的值是()A.eB.e2C.eq\f(1,e)D.eq\f(1,e2)(2)(2022·新高考全國(guó)Ⅰ)若曲線y=(x+a)ex有兩條過(guò)坐標(biāo)原點(diǎn)的切線,則a的取值范圍是____________________.思維升華(1)處理與切線有關(guān)的問(wèn)題,關(guān)鍵是根據(jù)曲線、切線、切點(diǎn)的三個(gè)關(guān)系列出參數(shù)的方程:①切點(diǎn)處的導(dǎo)數(shù)是切線的斜率;②切點(diǎn)在切線上;③切點(diǎn)在曲線上.(2)注意區(qū)分“在點(diǎn)P處的切線”與“過(guò)點(diǎn)P的切線”.跟蹤訓(xùn)練2(1)(2023·深圳質(zhì)檢)已知f(x)為偶函數(shù),當(dāng)x<0時(shí),f(x)=x3-x,則曲線y=f(x)在點(diǎn)(1,0)處的切線方程是()A.2x-y-2=0 B.4x-y-4=0C.2x+y-2=0 D.4x+y-4=0(2)若函數(shù)f(x)=x-eq\f(1,x)+alnx存在與x軸平行的切線,則實(shí)數(shù)a的取值范圍是________.題型三兩曲線的公切線例4(1)(2024·青島模擬)已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)=-2x2+m,g(x)=-3lnx-x,若以上兩函數(shù)的圖象有公共點(diǎn),且在公共點(diǎn)處切線相同,則m的值為()A.2B.5C.1D.0(2)若兩曲線y=lnx-1與y=ax2存在公切線,則正實(shí)數(shù)a的取值范圍是()A.(0,2e] B.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,2)e-3,+∞))C.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2)e-3)) D.[2e,+∞)__________________________跟蹤訓(xùn)練3(1)(2023·青島模擬)若曲線C1:f(x)=x2+a和曲線C2:g(x)=4lnx-2x存在有公共切點(diǎn)的公切線,則a=________.(2)已知f(x)=ex-1,g(x)=lnx+1,則f(x)與g(x)的公切線有()A.0條B.1條C.2條D.3條
§3.2導(dǎo)數(shù)與函數(shù)的單調(diào)性課標(biāo)要求1.結(jié)合實(shí)例,借助幾何直觀了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).3.會(huì)利用函數(shù)的單調(diào)性判斷大小,求參數(shù)的取值范圍等簡(jiǎn)單應(yīng)用.知識(shí)梳理1.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系條件恒有結(jié)論函數(shù)y=f(x)在區(qū)間(a,b)上可導(dǎo)f′(x)>0f(x)在區(qū)間(a,b)上____________________f′(x)<0f(x)在區(qū)間(a,b)上____________________f′(x)=0f(x)在區(qū)間(a,b)上是____________________2.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟第1步,確定函數(shù)f(x)的______________;第2步,求出導(dǎo)數(shù)f′(x)的______________;第3步,用f′(x)的零點(diǎn)將f(x)的定義域劃分為若干個(gè)區(qū)間,列表給出f′(x)在各區(qū)間上的正負(fù),由此得出函數(shù)y=f(x)在定義域內(nèi)的單調(diào)性.常用結(jié)論1.若函數(shù)f(x)在(a,b)上單調(diào)遞增,則當(dāng)x∈(a,b)時(shí),f′(x)≥0恒成立;若函數(shù)f(x)在(a,b)上單調(diào)遞減,則當(dāng)x∈(a,b)時(shí),f′(x)≤0恒成立.2.若函數(shù)f(x)在(a,b)上存在單調(diào)遞增區(qū)間,則當(dāng)x∈(a,b)時(shí),f′(x)>0有解;若函數(shù)f(x)在(a,b)上存在單調(diào)遞減區(qū)間,則當(dāng)x∈(a,b)時(shí),f′(x)<0有解.自主診斷1.判斷下列結(jié)論是否正確.(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)如果函數(shù)f(x)在某個(gè)區(qū)間內(nèi)恒有f′(x)=0,則f(x)在此區(qū)間內(nèi)沒有單調(diào)性.()(2)在(a,b)內(nèi)f′(x)≤0且f′(x)=0的根有有限個(gè),則f(x)在(a,b)內(nèi)單調(diào)遞減.()(3)若函數(shù)f(x)在定義域上都有f′(x)>0,則f(x)在定義域上一定單調(diào)遞增.()(4)函數(shù)f(x)=x-sinx在R上是增函數(shù).()2.(選擇性必修第二冊(cè)P86例2改編)(多選)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下列判斷正確的是()A.在區(qū)間(-2,1)上f(x)單調(diào)遞增B.在區(qū)間(2,3)上f(x)單調(diào)遞減C.在區(qū)間(4,5)上f(x)單調(diào)遞增D.在區(qū)間(3,5)上f(x)單調(diào)遞減3.(選擇性必修第二冊(cè)P97習(xí)題5.3T2(4)改編)已知f(x)=x3+x2-x的單調(diào)遞增區(qū)間為________________________.4.已知f(x)=2x2-ax+lnx在區(qū)間(1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是________________________________________________________________________.題型一不含參函數(shù)的單調(diào)性例1(1)函數(shù)f(x)=xlnx-3x+2的單調(diào)遞減區(qū)間為________________.(2)若函數(shù)f(x)=eq\f(lnx+1,ex),則函數(shù)f(x)的單調(diào)遞增區(qū)間為________________.跟蹤訓(xùn)練1已知函數(shù)f(x)=xsinx+cosx,x∈[0,2π],則f(x)的單調(diào)遞減區(qū)間為()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),\f(3π,2)))C.(π,2π) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2),2π))題型二含參數(shù)的函數(shù)的單調(diào)性例2已知函數(shù)g(x)=(x-a-1)ex-(x-a)2,討論函數(shù)g(x)的單調(diào)性.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華(1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對(duì)不等式解集的影響進(jìn)行分類討論.(2)劃分函數(shù)的單調(diào)區(qū)間時(shí),要在函數(shù)定義域內(nèi)討論,還要確定導(dǎo)數(shù)為零的點(diǎn)和函數(shù)的間斷點(diǎn).跟蹤訓(xùn)練2(2023·北京模擬)已知函數(shù)f(x)=eq\f(2x-a,x+12).(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;(2)求函數(shù)f(x)的單調(diào)區(qū)間.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型三函數(shù)單調(diào)性的應(yīng)用命題點(diǎn)1比較大小或解不等式例3(1)(多選)(2024·深圳模擬)若0<x1<x2<1,則()A.>lneq\f(x2+1,x1+1)B.<lneq\f(x2+1,x1+1)C.D.常見組合函數(shù)的圖象在導(dǎo)數(shù)的應(yīng)用中常用到以下函數(shù),記住以下的函數(shù)圖象對(duì)解題有事半功倍的效果.典例(多選)如果函數(shù)f(x)對(duì)定義域內(nèi)的任意兩實(shí)數(shù)x1,x2(x1≠x2)都有eq\f(x1fx1-x2fx2,x1-x2)>0,則稱函數(shù)y=f(x)為“F函數(shù)”.下列函數(shù)不是“F函數(shù)”的是()A.f(x)=ex B.f(x)=x2C.f(x)=lnx D.f(x)=sinx(2)(2023·成都模擬)已知函數(shù)f(x)=ex-e-x-2x+1,則不等式f(2x-3)+f(x)>2的解集為____________________.命題點(diǎn)2根據(jù)函數(shù)的單調(diào)性求參數(shù)例4已知函數(shù)f(x)=lnx-eq\f(1,2)ax2-2x(a≠0).(1)若f(x)在[1,4]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若f(x)在[1,4]上存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟蹤訓(xùn)練3(1)(2024·鄭州模擬)函數(shù)f(x)的圖象如圖所示,設(shè)f(x)的導(dǎo)函數(shù)為f′(x),則f(x)·f′(x)>0的解集為()A.(1,6) B.(1,4)C.(-∞,1)∪(6,+∞) D.(1,4)∪(6,+∞)(2)已知函數(shù)f(x)=(1-x)lnx+ax在(1,+∞)上不單調(diào),則a的取值范圍是()A.(0,+∞) B.(1,+∞)C.[0,+∞) D.[1,+∞)
§3.3導(dǎo)數(shù)與函數(shù)的極值、最值課標(biāo)要求1.借助函數(shù)圖象,了解函數(shù)在某點(diǎn)取得極值的必要和充分條件.2.會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值.3.掌握利用導(dǎo)數(shù)研究函數(shù)最值的方法.4.會(huì)用導(dǎo)數(shù)研究生活中的最優(yōu)化問(wèn)題.知識(shí)梳理1.函數(shù)的極值(1)函數(shù)的極小值函數(shù)y=f(x)在點(diǎn)x=a處的函數(shù)值f(a)比它在點(diǎn)x=a附近其他點(diǎn)處的函數(shù)值都小,f′(a)=0;而且在點(diǎn)x=a附近的左側(cè)____________,右側(cè)____________,則a叫做函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值.(2)函數(shù)的極大值函數(shù)y=f(x)在點(diǎn)x=b處的函數(shù)值f(b)比它在點(diǎn)x=b附近其他點(diǎn)處的函數(shù)值都大,f′(b)=0;而且在點(diǎn)x=b附近的左側(cè)____________,右側(cè)____________,則b叫做函數(shù)y=f(x)的極大值點(diǎn),f(b)叫做函數(shù)y=f(x)的極大值.(3)極小值點(diǎn)、極大值點(diǎn)統(tǒng)稱為________,極小值和極大值統(tǒng)稱為________.2.函數(shù)的最大(小)值(1)函數(shù)f(x)在區(qū)間[a,b]上有最值的條件:如果在區(qū)間[a,b]上函數(shù)y=f(x)的圖象是一條____________的曲線,那么它必有最大值和最小值.(2)求函數(shù)y=f(x)在區(qū)間[a,b]上的最大(小)值的步驟:①求函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)的_______________________________________________;②將函數(shù)y=f(x)的各極值與________________________________比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.常用結(jié)論對(duì)于可導(dǎo)函數(shù)f(x),“f′(x0)=0”是“函數(shù)f(x)在x=x0處有極值”的必要不充分條件.自主診斷1.判斷下列結(jié)論是否正確.(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)函數(shù)的極值可能不止一個(gè),也可能沒有.()(2)函數(shù)的極小值一定小于函數(shù)的極大值.()(3)函數(shù)的極小值一定是函數(shù)的最小值.()(4)函數(shù)的極大值一定不是函數(shù)的最小值.()2.(選擇性必修第二冊(cè)P98T4改編)如圖是f(x)的導(dǎo)函數(shù)f′(x)的圖象,則f(x)的極小值點(diǎn)的個(gè)數(shù)為()A.1B.2C.3D.43.若函數(shù)f(x)=x3-ax2+2x-1有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是___________________.4.(選擇性必修第二冊(cè)P93例6改編)函數(shù)f(x)=eq\f(1,3)x3-4x+4在區(qū)間[0,3]上的最大值是________,最小值是________.題型一利用導(dǎo)數(shù)求解函數(shù)的極值問(wèn)題命題點(diǎn)1根據(jù)函數(shù)圖象判斷極值例1(多選)(2023·連云港模擬)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,下列說(shuō)法正確的是()A.f(1)為函數(shù)f(x)的極大值B.當(dāng)x=-1時(shí),f(x)取得極小值C.f(x)在(-1,2)上單調(diào)遞增,在(2,4)上單調(diào)遞減D.當(dāng)x=3時(shí),f(x)取得極小值命題點(diǎn)2求已知函數(shù)的極值例2設(shè)函數(shù)f(x)=(x2+ax+a)ex,討論f(x)的單調(diào)性并判斷f(x)有無(wú)極值,若有極值,求出f(x)的極值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________命題點(diǎn)3已知極值(點(diǎn))求參數(shù)例3(1)(2024·成都模擬)若函數(shù)f(x)=x(x+a)2在x=1處有極大值,則實(shí)數(shù)a的值為()A.1 B.-1或-3C.-1 D.-3(2)(2023·威海模擬)若函數(shù)f(x)=ex-ax2-2ax有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),0)) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(1,2)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2))) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))跟蹤訓(xùn)練1(1)已知函數(shù)f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則a+b的值為()A.-1或3 B.1或-3C.3 D.-1(2)(2023·商丘模擬)已知函數(shù)f(x)=x2-aln(2x+1)在定義域內(nèi)不存在極值點(diǎn),則實(shí)數(shù)a的取值范圍是__________________.題型二利用導(dǎo)數(shù)求函數(shù)的最值問(wèn)題命題點(diǎn)1不含參函數(shù)的最值例4(2022·全國(guó)乙卷)函數(shù)f(x)=cosx+(x+1)sinx+1在區(qū)間[0,2π]的最小值、最大值分別為()A.-eq\f(π,2),eq\f(π,2) B.-eq\f(3π,2),eq\f(π,2)C.-eq\f(π,2),eq\f(π,2)+2 D.-eq\f(3π,2),eq\f(π,2)+2命題點(diǎn)2含參函數(shù)的最值例5已知函數(shù)f(x)=ax2-(a+2)x+lnx.當(dāng)a>0時(shí),f(x)在區(qū)間[1,e]上的最小值為-2,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華求含有參數(shù)的函數(shù)的最值,需先求函數(shù)的定義域、導(dǎo)函數(shù),通過(guò)對(duì)參數(shù)分類討論,判斷函數(shù)的單調(diào)性,從而得到函數(shù)f(x)的最值.跟蹤訓(xùn)練2(1)(2021·新高考全國(guó)Ⅰ)函數(shù)f(x)=|2x-1|-2lnx的最小值為________.(2)(2024·上饒模擬)已知函數(shù)f(x)=lnx+ax2+1.當(dāng)0<x≤e2時(shí),g(x)=f(x)-ax2-3+eq\f(a,x)有最小值2,求a的值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
§3.4函數(shù)中的構(gòu)造問(wèn)題重點(diǎn)解讀函數(shù)中的構(gòu)造問(wèn)題是高考考查的一個(gè)熱點(diǎn)內(nèi)容,經(jīng)常以客觀題出現(xiàn),同構(gòu)法構(gòu)造函數(shù)也在解答題中出現(xiàn),通過(guò)已知等式或不等式的結(jié)構(gòu)特征,構(gòu)造新函數(shù),解決比較大小、解不等式、恒成立等問(wèn)題.題型一利用f(x)與x構(gòu)造函數(shù)例1(2023·信陽(yáng)統(tǒng)考)已知f(x)是定義在R上的偶函數(shù),當(dāng)x>0時(shí),xf′(x)-f(x)<0,且f(-2)=0,則不等式eq\f(fx,x)>0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(0,2)思維升華(1)出現(xiàn)nf(x)+xf′(x)形式,構(gòu)造函數(shù)F(x)=xnf(x).(2)出現(xiàn)xf′(x)-nf(x)形式,構(gòu)造函數(shù)F(x)=eq\f(fx,xn).跟蹤訓(xùn)練1(多選)(2023·郴州統(tǒng)考)已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),xf′(x)+2f(x)>0恒成立,則()A.f(1)<4f(2) B.f(-1)<4f(-2)C.16f(4)<9f(3) D.4f(-2)>9f(-3)題型二利用f(x)與ex構(gòu)造函數(shù)例2(2024·吉安模擬)已知定義在R上的函數(shù)f(x)滿足f(x)<f′(x)-2,則()A.f(2023)-ef(2022)<2(e-1)B.f(2023)-ef(2022)>2(e-1)C.f(2023)-ef(2022)>2(e+1)D.f(2023)-ef(2022)<2(e+1)跟蹤訓(xùn)練2(2023·南昌模擬)已知定義在R上的函數(shù)f(x)滿足f(x)+f′(x)>0,且有f(3)=3,則f(x)>3e3-x的解集為________.題型三利用f(x)與sinx,cosx構(gòu)造函數(shù)例3設(shè)f(x)是定義在(-π,0)∪(0,π)上的奇函數(shù),其導(dǎo)函數(shù)為f′(x),且當(dāng)x∈(0,π)時(shí),f′(x)sinx-f(x)cosx<0,則關(guān)于x的不等式f(x)<2f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)))sinx的解集為_____________________________.跟蹤訓(xùn)練3已知定義在R上的奇函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),且當(dāng)x∈(0,+∞)時(shí),f′(x)sinx+f(x)cosx<0,若a=eq\f(\r(2),2)f
eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6))),b=-f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4))),則a與b的大小關(guān)系為________.(用“<”連接)
§3.5利用導(dǎo)數(shù)研究恒(能)成立問(wèn)題課標(biāo)要求恒(能)成立問(wèn)題是高考的??伎键c(diǎn),其中不等式的恒(能)成立問(wèn)題經(jīng)常與導(dǎo)數(shù)及其幾何意義、函數(shù)、方程等相交匯,綜合考查分析問(wèn)題、解決問(wèn)題的能力,一般作為壓軸題出現(xiàn),試題難度略大.題型一分離參數(shù)求參數(shù)范圍例1已知函數(shù)f(x)=ex-ax-1.(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間與極值;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若f(x)≤x2在(0,+∞)上有解,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟蹤訓(xùn)練1已知函數(shù)f(x)=ax-ex(a∈R),g(x)=eq\f(lnx,x).(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;(2)若存在x∈(0,+∞),使不等式f(x)≤g(x)-ex成立,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型二等價(jià)轉(zhuǎn)化求參數(shù)范圍例2(2023·柳州模擬)已知函數(shù)f(x)=ax-lnx.(1)討論函數(shù)f(x)的單調(diào)性;(2)若x=1為函數(shù)f(x)的極值點(diǎn),當(dāng)x∈[e,+∞)時(shí),不等式x[f(x)-x+1]≤m(e-x)恒成立,求實(shí)數(shù)m的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟蹤訓(xùn)練2(2024·咸陽(yáng)模擬)已知函數(shù)f(x)=lnx+x+eq\f(2,ax)(a≠0).(1)當(dāng)a=1時(shí),求f(x)的極值;(2)若對(duì)?x∈(e-1,e),f(x)<x+2,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型三雙變量的恒(能)成立問(wèn)題例3(2023·濟(jì)南模擬)已知函數(shù)f(x)=eq\f(2elnx,x)-1(其中e為自然對(duì)數(shù)的底數(shù)),函數(shù)g(x)=x3+ax2+1.(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)若對(duì)?x1,x2∈[1,e],不等式f(x1)≤g(x2)恒成立,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華“雙變量”的恒(能)成立問(wèn)題一定要正確理解其實(shí)質(zhì),深刻挖掘內(nèi)含條件,進(jìn)行等價(jià)變換,常見的等價(jià)變換有對(duì)于某一區(qū)間I(1)?x1,x2∈I,f(x1)>g(x2)?f(x)min>g(x)max.(2)?x1∈I1,?x2∈I2,f(x1)>g(x2)?f(x)min>g(x)min.(3)?x1∈I1,?x2∈I2,f(x1)>g(x2)?f(x)max>g(x)max.跟蹤訓(xùn)練3已知函數(shù)f(x)=eq\f(ax2-x-1,ex)(x∈R),a為正實(shí)數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若?x1,x2∈[0,4],不等式|f(x1)-f(x2)|<1恒成立,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
§3.6利用導(dǎo)數(shù)證明不等式課標(biāo)要求導(dǎo)數(shù)中的不等式證明是高考的常考題型,常與函數(shù)的性質(zhì)、函數(shù)的零點(diǎn)與極值、數(shù)列等相結(jié)合,雖然題目難度較大,但是解題方法多種多樣,如構(gòu)造函數(shù)法、放縮法等,針對(duì)不同的題目,靈活采用不同的解題方法,可以達(dá)到事半功倍的效果.題型一將不等式轉(zhuǎn)化為函數(shù)的最值問(wèn)題例1(12分)(2023·新高考全國(guó)Ⅰ)已知函數(shù)f(x)=a(ex+a)-x.(1)討論f(x)的單調(diào)性;[切入點(diǎn):求導(dǎo),討論a的正負(fù)](2)證明:當(dāng)a>0時(shí),f(x)>2lna+eq\f(3,2).[方法一關(guān)鍵點(diǎn):作差法比較f(x)min與2lna+eq\f(3,2)的大小][方法二關(guān)鍵點(diǎn):利用不等式ex≥x+1把函數(shù)f(x)中的指數(shù)換成一次函數(shù)][思路分析](1)求f′(x)→分a>0,a≤0判斷f′(x)的符號(hào)→f(x)的單調(diào)性(2)方法一:求f(x)min→構(gòu)造函數(shù)g(a)=f(x)min-eq\b\lc\(\rc\)(\a\vs4\al\co1(2lna+\f(3,2)))→求g(a)最小值方法二:證明不等式ex≥x+1→aex=ex+lna≥x+lna+1→f(x)≥a2+lna+1→構(gòu)造函數(shù)g(a)=a2+lna+1-eq\b\lc\(\rc\)(\a\vs4\al\co1(2lna+\f(3,2)))→求g(a)最小值思維升華待證不等式的兩邊含有同一個(gè)變量時(shí),一般地,可以直接構(gòu)造“左減右”的函數(shù),有時(shí)對(duì)復(fù)雜的式子要進(jìn)行變形,利用導(dǎo)數(shù)研究其單調(diào)性和最值,借助所構(gòu)造函數(shù)的單調(diào)性和最值即可得證.(1)解因?yàn)閒(x)=a(ex+a)-x,定義域?yàn)镽,所以f′(x)=aex-1,(1分)當(dāng)a≤0時(shí),由于ex>0,則aex≤0,故f′x=aex-1<0恒成立,①處判斷f′(x)的符號(hào)所以f(x)是減函數(shù);(2分)當(dāng)a>0時(shí),令f′(x)=aex-1=0,解得x=-lna,eq\x(\a\al\vs4\co1(當(dāng)x<-lna時(shí),f′x<0,,則fx在-∞,-lna上單調(diào)遞減;,當(dāng)x>-lna時(shí),f′x>0,,則fx在-lna,+∞上單調(diào)遞增.))(4分)②處判斷f′(x)的符號(hào)綜上,當(dāng)a≤0時(shí),f(x)是減函數(shù);當(dāng)a>0時(shí),f(x)在(-∞,-lna)上單調(diào)遞減,在(-lna,+∞)上單調(diào)遞增.(5分)(2)證明方法一由(1)得,當(dāng)a>0時(shí),eq\x(\a\al\vs4\co1(fxmin=f-lna=ae-lna+a+lna,=1+a2+lna,))(7分)③處利用單調(diào)性求f(x)min要證f(x)>2lna+eq\f(3,2),即證1+a2+lna>2lna+eq\f(3,2),即證a2-eq\f(1,2)-lna>0恒成立,(8分)eq\x(\a\al\vs4\co1(令g(a)=a2-\f(1,2)-lna(a>0),))(9分)④處構(gòu)造函數(shù)ga=fxmin-eq\b\lc\(\rc\)(\a\vs4\al\co1(2lna+\f(3,2)))則g′(a)=2a-eq\f(1,a)=eq\f(2a2-1,a),令g′(a)<0,則0<a<eq\f(\r(2),2);令g′(a)>0,則a>eq\f(\r(2),2),所以g(a)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))上單調(diào)遞減,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),+∞))上單調(diào)遞增,(11分)eq\x(\a\al\vs4\co1(所以g(a)min=g\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))=\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-\f(1,2)-ln
\f(\r(2),2)=ln
\r(2)>0,))⑤處求gamin并判斷其符號(hào)則g(a)>0恒成立,所以當(dāng)a>0時(shí),f(x)>2lna+eq\f(3,2)恒成立,證畢.(12分)方法二eq\x(令hx=ex-x-1,)⑥處構(gòu)造函數(shù)證明ex≥x+1則h′(x)=ex-1,由于y=ex是增函數(shù),所以h′(x)=ex-1是增函數(shù),又h′(0)=e0-1=0,所以當(dāng)x<0時(shí),h′(x)<0;當(dāng)x>0時(shí),h′(x)>0,所以h(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,故h(x)≥h(0)=0,則ex≥x+1,當(dāng)且僅當(dāng)x=0時(shí),等號(hào)成立,(6分)eq\x(\a\al\vs4\co1(因?yàn)閒x=aex+a-x=aex+a2-x,=ex+lna+a2-x≥x+lna+1+a2-x,))⑦處通過(guò)不等式ex≥x+1放縮函數(shù)fx當(dāng)且僅當(dāng)x+lna=0,即x=-lna時(shí),等號(hào)成立,所以要證f(x)>2lna+eq\f(3,2),即證x+lna+1+a2-x>2lna+eq\f(3,2),即證a2-eq\f(1,2)-lna>0,(8分)eq\x(\a\al\vs4\co1(令g(a)=a2-\f(1,2)-lna(a>0),))(9分)⑧處構(gòu)造函數(shù)ga則g′(a)=2a-eq\f(1,a)=eq\f(2a2-1,a),令g′(a)<0,則0<a<eq\f(\r(2),2);令g′(a)>0,則a>eq\f(\r(2),2),所以g(a)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))上單調(diào)遞減,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),+∞))上單調(diào)遞增,(11分)所以g(a)min=geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-eq\f(1,2)-lneq\f(\r(2),2)=lneq\r(2)>0,⑨處求gamin并判斷其符號(hào)則g(a)>0恒成立,所以當(dāng)a>0時(shí),f(x)>2lna+eq\f(3,2)恒成立,證畢.(12分)跟蹤訓(xùn)練1(2023·咸陽(yáng)模擬)已知函數(shù)f(x)=eq\f(sinx,ex)(x∈R).(1)求f(x)的圖象在點(diǎn)(0,f(0))處的切線方程;(2)求證:當(dāng)x∈[0,π]時(shí),f(x)≤x.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型二將不等式轉(zhuǎn)化為兩個(gè)函數(shù)的最值進(jìn)行比較例2已知函數(shù)f(x)=elnx-ax(a∈R).(1)討論f(x)的單調(diào)性;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)當(dāng)a=e時(shí),證明:xf(x)-ex+2ex≤0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華若直接求導(dǎo)比較復(fù)雜或無(wú)從下手時(shí),可將待證式進(jìn)行變形,構(gòu)造兩個(gè)函數(shù),從而找到可以傳遞的中間量,達(dá)到證明的目標(biāo).本例中同時(shí)含lnx與ex,不能直接構(gòu)造函數(shù),把指數(shù)與對(duì)數(shù)分離兩邊,分別計(jì)算它們的最值,借助最值進(jìn)行證明.跟蹤訓(xùn)練2(2023·合肥模擬)已知函數(shù)f(x)=ex+x2-x-1.(1)求f(x)的最小值;(2)證明:ex+xlnx+x2-2x>0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型三雙變量不等式的證明例3已知函數(shù)f(x)=(a+1)lnx+ax2+1.(1)討論函數(shù)f(x)的單調(diào)性;(2)設(shè)a≤-2,證明:對(duì)任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟蹤訓(xùn)練3已知函數(shù)f(x)=ax+1(x>0),g(x)=lnx-eq\f(a-1,x)+2a.(1)若a=eq\f(1,2),比較函數(shù)f(x)與g(x)的大??;(2)若m>n>0,求證:eq\f(m-n,lnm-lnn)>eq\r(mn).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
§3.7利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)課標(biāo)要求函數(shù)零點(diǎn)問(wèn)題在高考中占有很重要的地位,主要涉及判斷函數(shù)零點(diǎn)的個(gè)數(shù)或范圍.高考??疾槿魏瘮?shù)與復(fù)合函數(shù)的零點(diǎn)問(wèn)題,以及函數(shù)零點(diǎn)與其他知識(shí)的交匯問(wèn)題,一般作為解答題的壓軸題出現(xiàn).題型一利用函數(shù)性質(zhì)研究函數(shù)的零點(diǎn)例1(2023·遼寧實(shí)驗(yàn)中學(xué)模擬)已知函數(shù)f(x)=excosx.(1)求f(x)在區(qū)間eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))內(nèi)的極大值;(2)令函數(shù)h(x)=eq\f(axfx,ex)-1,當(dāng)a>eq\f(4\r(2),π)時(shí),證明:h(x)在區(qū)間eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))內(nèi)有且僅有兩個(gè)零點(diǎn).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟蹤訓(xùn)練1(2023·蕪湖模擬)已知函數(shù)f(x)=ax+(a-1)lnx+eq\f(1,x)-2,a∈R.(1)討論f(x)的單調(diào)性;(2)若f(x)只有一個(gè)零點(diǎn),求a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型二數(shù)形結(jié)合法研究函數(shù)的零點(diǎn)例2(2023·安慶模擬)已知函數(shù)f(x)=alnx+bx2e1-x,a,b∈R.e=2.71828….(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程是y=x+ln2,求a和b的值;(2)若a=e,討論導(dǎo)函數(shù)f′(x)的零點(diǎn)個(gè)數(shù).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華含參數(shù)的函數(shù)的零點(diǎn)個(gè)數(shù),可轉(zhuǎn)化為方程解的個(gè)數(shù),若能分離參數(shù),則可將參數(shù)分離出來(lái)后,用x表示參數(shù)的函數(shù),作出該函數(shù)的圖象,根據(jù)圖象特征求參數(shù)的范圍或判斷零點(diǎn)個(gè)數(shù).跟蹤訓(xùn)練2(2024·廈門模擬)設(shè)函數(shù)f(x)=lnx-eq\f(1,2)ax2-bx(a,b∈R).(1)當(dāng)a=2,b=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[1,e2]上有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型三構(gòu)造函數(shù)法研究函數(shù)的零點(diǎn)例3已知函數(shù)f(x)=ex+x+4ln(2-x).(1)求函數(shù)f(x)的圖象在點(diǎn)(0,f(0))處的切線方程;(2)判斷函數(shù)f(x)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟蹤訓(xùn)練3(2021·全國(guó)甲卷)已知a>0且a≠1,函數(shù)f(x)=eq\f(xa,ax)(x>0).(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間;(2)若曲線y=f(x)與直線y=1有且僅有兩個(gè)交點(diǎn),求a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
培優(yōu)點(diǎn)2指對(duì)同構(gòu)問(wèn)題把一個(gè)等式或不等式通過(guò)變形,使左右兩邊結(jié)構(gòu)形式完全相同,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性進(jìn)行處理,找到這個(gè)函數(shù)模型的方法就是同構(gòu)法.同構(gòu)法主要解決含有指數(shù)、對(duì)數(shù)混合的等式或不等式問(wèn)題.題型一同構(gòu)法的理解例1(1)若ea+a>b+lnb(a,b為變量)成立,則下列選項(xiàng)正確的是()A.a(chǎn)>lnb B.a(chǎn)<lnbC.lna>b D.lna<b(2)若關(guān)于a的方程aea-2=e4和關(guān)于b的方程b(lnb-2)=e3λ-1(a,b∈R+)可化為同構(gòu)方程,則ab的值為()A.e8B.eC.ln6D.1思維升華利用恒等式x=lnex和x=elnx,通過(guò)冪轉(zhuǎn)指或冪轉(zhuǎn)對(duì)進(jìn)行等價(jià)變形,構(gòu)造函數(shù),然后由構(gòu)造的函數(shù)的單調(diào)性進(jìn)行研究.跟蹤訓(xùn)練1已知不等式ax+eax>ln(bx)+bx進(jìn)行指對(duì)同構(gòu)時(shí),可以構(gòu)造的函數(shù)是()A.f(x)=lnx+x B.f(x)=xlnxC.f(x)=xex D.f(x)=eq\f(x,ex)題型二同構(gòu)法的應(yīng)用命題點(diǎn)1alna與xex同構(gòu)例2設(shè)實(shí)數(shù)k>0,對(duì)于任意的x>1,不等式kekx≥lnx恒成立,則k的最小值為________.命題點(diǎn)2beb與xlnx同構(gòu)例3(2023·南京模擬)設(shè)a,b都為正數(shù),e為自然對(duì)數(shù)的底數(shù),若aea<blnb,則()A.a(chǎn)b>e B.b>eaC.a(chǎn)b<e D.b<ea命題點(diǎn)3eq\f(c,ec)與eq\f(lnx,x)同構(gòu)例4若關(guān)于x的不等式eq\f(x+lna,ex)-eq\f(alnx,x)>0對(duì)?x∈(0,1)恒成立,則實(shí)數(shù)a的取值范圍為()A.eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(1,e))) B.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,e),+∞))C.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,e),1)) D.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,e)))命題點(diǎn)4d+lnd與x+ex同構(gòu)例5對(duì)于任意的x>0,ex≥(a-1)x+ln(ax)恒成立,則a的最大值是________.思維升華常見的同構(gòu)函數(shù)有:①f(x)=eq\f(lnx,x);②f(x)=xlnx;③f(x)=xex;④f(x)=eq\f(x,ex).其中①④可以借助eq\f(lnx,x)=eq\f(lnx,elnx)=eq\f(t,et),②③可以借助xex=(lnex)ex=(lnt)t=tlnt進(jìn)行指對(duì)互化.跟蹤訓(xùn)練2(1)(2024·武漢模擬)已知a>0,若在(1,+∞)上存在x使得不等式ex-x≤xa-alnx成立,則a的最小值為________.(2)若對(duì)任意x∈[e,+∞),滿足2x3lnx-≥0恒成立,則實(shí)數(shù)m的取值范圍是________________________.1.設(shè)x>0,y>0,若ex+lny>x+y,則下列選項(xiàng)正確的是()A.x>y B.x>lnyC.x<y D.x<lny2.若ex-ax≥-x+ln(ax),則正實(shí)數(shù)a的取值范圍為()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,e))) B.(0,e]C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e),+∞)) D.(e,+∞)3.已知函數(shù)f(x)=x2ex-a(x+2lnx)有兩個(gè)零點(diǎn),則a的取值范圍是()A.a(chǎn)≥1 B.a(chǎn)≤2C.a(chǎn)≤e D.a(chǎn)>e4.(多選)若不相等的正數(shù)a,b滿足aa=bb,則()A.a(chǎn)>1B.b<1C.a(chǎn)+b>eq\f(2,e)D.(n∈N*)5.若?x∈(0,+∞),ln2x-eq\f(aex,2)≤lna恒成立,則a的取值范圍為________________________.6.(2024·漳州質(zhì)檢)已知函數(shù)f(x)=aex+x+1.(1)討論f(x)的單調(diào)性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年楚雄教練員從業(yè)資格理論考試題庫(kù)
- 我的小花園我的生活樂(lè)趣寫物(8篇)
- ××超市監(jiān)控系統(tǒng)細(xì)則
- 移動(dòng)支付業(yè)務(wù)合作協(xié)議附風(fēng)險(xiǎn)控制措施條款
- 財(cái)務(wù)成本控制與預(yù)算分析練習(xí)題
- 信息技術(shù)支持農(nóng)業(yè)發(fā)展的合作協(xié)議
- 新聞版權(quán)與報(bào)道協(xié)議
- 2025年無(wú)縫管熱連軋機(jī)項(xiàng)目申請(qǐng)報(bào)告
- 農(nóng)業(yè)種植技術(shù)與知識(shí)產(chǎn)權(quán)共享協(xié)議
- 小學(xué)生作文捅馬蜂窩(15篇)
- 標(biāo)本采集錯(cuò)誤警示教育
- 2025年人教版小學(xué)四年級(jí)下冊(cè)數(shù)學(xué)期末提升測(cè)試試題(含答案和解析)
- 2025年高等自學(xué)教育考試馬克思主義基本原理概論全真模擬試卷及答案(共四套)
- 2025年安徽省高考物理真題(解析版)
- 2025年新疆中考數(shù)學(xué)真題試卷及答案
- 2025-2030年中國(guó)茶具行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報(bào)告
- 2025至2030年中國(guó)月子中心行業(yè)競(jìng)爭(zhēng)格局分析及市場(chǎng)前景趨勢(shì)報(bào)告
- 2025年中國(guó)螢石行業(yè)市場(chǎng)全景調(diào)查研究報(bào)告
- 知不足而奮進(jìn) 望遠(yuǎn)山而前行課件-2026屆高三一輪復(fù)習(xí)總動(dòng)員會(huì)
- 2025年山煤國(guó)際招聘筆試沖刺題(帶答案解析)
- 2024-2025學(xué)年七年級(jí)英語(yǔ)下學(xué)期期末模擬試卷(外研版2024)
評(píng)論
0/150
提交評(píng)論