《多項式與多項式相乘》參考教案_第1頁
《多項式與多項式相乘》參考教案_第2頁
《多項式與多項式相乘》參考教案_第3頁
《多項式與多項式相乘》參考教案_第4頁
《多項式與多項式相乘》參考教案_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1/58.2整式乘法多項式與多項式相乘●教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索多項式與多項式相乘的運算法則的過程,會進(jìn)行簡單的多項式與多項式相乘運算(其中多項式相乘僅限于一次式相乘).2.理解多項式與多項式相乘運算的算理,體會乘法分配律的作用和轉(zhuǎn)化的思想.(二)能力訓(xùn)練要求1.發(fā)展有條理的思考及語言表達(dá)能力.2.培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想.(三)情感與價值觀要求在體會乘法分配律和轉(zhuǎn)化思想的過程中,獲得成就感,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣和信心.●教學(xué)重點多項式與多項式相乘的法則及應(yīng)用.●教學(xué)難點靈活地進(jìn)行整式乘法的運算.●教學(xué)方法活動探究法.●教學(xué)過程Ⅰ.創(chuàng)設(shè)問題情景,引入新課問題3一塊長方形的菜地,長為a,寬為m?,F(xiàn)將它的長增加b,寬增加n,求擴(kuò)大后的菜地的面積。結(jié)合圖形考慮有幾種計算方法?算法一:擴(kuò)大后菜地的長是a+b,寬是m+n,所以它的面積是(a+b)(m+n)算法二:先算4塊小矩形的面積,再求總面積。擴(kuò)大后菜地的面積是am+bm+an+bn算法三:如圖所示,分別求出圖中兩個長方形的面積,再求總面積。擴(kuò)大后菜地的面積為:(a+b)m+(a+b)n算法四:如圖所示,分別求出圖中兩個長方形的面積,再求總面積。擴(kuò)大后菜地的面積為:a(m+n)+b(m+n)由上面的同一圖形不同的面積表示方法可得:(a+b)(m+n)am+bm+an+bn(a+b)m+(a+b)na(m+n)+b(m+n)我們觀察上面四個式子可以發(fā)現(xiàn),它們是相等的,而它們正是單項式與多項式相乘的一個幾何解釋.實際上,多項式與多項式相乘,可以把其中的一個多項式看成一個整體,再運用單項式與多項式相乘的方法進(jìn)行運算.結(jié)合上面的代數(shù)解釋和幾何解釋,你能總結(jié)出多項式與多項式相乘的運算法則嗎?多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加.下面我們就來看幾個多項式與多項式相乘的整式乘法運算.[例6]計算:(1)(ax+b)(cx+d);(2)(–2x–1)(3x–2);分析:在做的過程中,要明白每一步算理.因此,不要求直接利用法則進(jìn)行運算,而要利用乘法分配律將多項式與多項式相乘轉(zhuǎn)化為單項式與多項式相乘.[例7]計算:(a+b)(a2-ab+b2);(y2+y+1)(y+2)Ⅲ.練一練P64練習(xí)題Ⅳ.課時小結(jié)這節(jié)課我們通過拼圖游戲,可以直觀地認(rèn)識多項式與多項式的乘法,然后又從代數(shù)運算的角度將多項式與多項式相乘轉(zhuǎn)化為單項式與多項式相乘,從而歸納出多項式與多項式相乘的法則.重點是明白每一步的算理,熟練多項式與多項式乘法的運算法則.Ⅴ.課后作業(yè)1.課本習(xí)題8.2第12、13題.2.歸納總結(jié)整式的乘法運算,并寫出體會、經(jīng)驗在全班交流.●備課資料1.選擇題(1)計算m2-(m+1)(m-5)的結(jié)果正確的是()A.-4m-5 B.4C.m2-4m+5 D.m2+4m(2)(1+x)(2x2+ax+1)的結(jié)果中x2項的系數(shù)為-2,則a的值為()A.-2 B.1C.-4 D.以上都不對(3)下列等式成立的是()A.(a+2b)2=a2+4b2B.(2x-3y)2=4x2-9y2C.(m+)2=+m+m2D.(a-2b)2=a2-2ab+4b2(4)三個連續(xù)奇數(shù),若中間一個為n,則它們的積為()A.6n3-6n B.4n3-nC.n3-4n D.n3-n(5)下列等式()①x(x-y)-y(3y-2x)=x2-3xy-3y2②-ab2(b3-ab2+2a3b)=-ab5+a2b4-a4b3③(a-b)(a+b)=a2-ab+b2④(2x+y)(4x2+2xy+y2)=8x3+y3中,正確的是()A.0個 B.1個 C.2個 D.3個2.計算:(1)5(x-1)(x+3)-2(x-5)(x-2)(2)(3x-2y)(2x-3y)(3)(a-b)(a2+ab+b2)(4)(3y+2)(y-4)-3(y-2)(y-3)3.先化簡,再求值(x-y)(x-2y)-(2x-3y)(x+2y),其中x=2,y=.4.規(guī)律探索題(1)研究下列等式:①1×3+1=4=22;②2×4+1=9=32;③3×5+1=16=42;④4×6+1=25=52…你發(fā)現(xiàn)有什么規(guī)律?根據(jù)你的發(fā)現(xiàn),找出表示第n個等式的公式并證明.(2)計算下列各式,你能發(fā)現(xiàn)什么規(guī)律嗎?(x-1)(x+1)=.(x-1)(x2+x+1)=.(x-1)(x3+x2+x+1)=.(x-1)(x4+x3+x2+x+1)=.…(x-1)(xn+xn-1+…+x+1)=.答案:1.(1)B(2)C(3)C(4)C(5)B2.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論