過程卡片.doc

輸出軸零件的機械加工工藝規(guī)程及工藝裝備設(shè)計

收藏

資源目錄
跳過導(dǎo)航鏈接。
壓縮包內(nèi)文檔預(yù)覽:
預(yù)覽圖 預(yù)覽圖
編號:87696596    類型:共享資源    大?。?span id="8qkguw6" class="font-tahoma">1.49MB    格式:ZIP    上傳時間:2020-06-24 上傳人:1111111****111111... IP屬地:湖南
15
積分
關(guān) 鍵 詞:
輸出 零件 機械 加工 工藝 規(guī)程 裝備 設(shè)計
資源描述:
輸出軸零件的機械加工工藝規(guī)程及工藝裝備設(shè)計,輸出,零件,機械,加工,工藝,規(guī)程,裝備,設(shè)計
內(nèi)容簡介:
機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間10去毛刺45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床CA6140夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1去毛刺5001000.352345描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號檢驗車間11檢驗45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床夾具編號夾具名稱冷卻液工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1檢驗內(nèi)徑千分尺,外徑千分尺2,345描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號檢驗車間3熱處理45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床夾具編號夾具名稱冷卻液工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1調(diào)制處理到200HBS2,345描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間2粗車45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床CA6140夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1粗車外圓大端面至244CA6140,游標(biāo)卡尺32070.340.71222粗車61外圓柱面至58CA6140,游標(biāo)卡尺32070.340.711.513粗車66外圓柱面至63CA6140,游標(biāo)卡尺40070.340.711.514粗車71外圓柱面至68CA6140,游標(biāo)卡尺32070.340.711.515粗車30的斜面CA6140,游標(biāo)卡尺32070.340.711.7526粗車81外圓柱面至78CA6140,游標(biāo)卡尺32080.380.711.517鉆左端中心孔CA6140,游標(biāo)卡尺50080.50.81.518半精車58外圓柱面至56CA6140,外徑游標(biāo)卡尺6601200.45119半精車63外圓柱面至61CA6140,外徑游標(biāo)卡尺510100.70.451110半精車68外圓柱面至66CA6140,外徑游標(biāo)卡尺510108.70.451110半精車78外圓柱面至76CA6140,外徑游標(biāo)卡尺4501100.4511描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號7機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁金工車間工序號工序名稱材料牌號金工車間1粗車、粗鏜45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床CA6140夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1粗車179外圓尺寸至176CA6140,游標(biāo)卡尺,車刀12573.40.811.512粗車右端面至尺寸31CA6140,游標(biāo)卡尺,車刀200110.50.661.52半精車右端面至尺寸30CA6140,外徑千分尺,車刀2101200.410.2523粗鏜44的內(nèi)孔至50CA6140,游標(biāo)卡尺,鏜刀110540.251.524粗鏜77的內(nèi)孔至78.5CA6140,游標(biāo)卡尺,鏜刀110550.250.7515粗鏜100的內(nèi)孔至104CA6140,游標(biāo)卡尺,鏜刀11056.60.25216半精鏜78.5的鏜內(nèi)孔至79.5CA6140,外徑千分尺,鏜刀1601000.20.2527倒角CA6140,游標(biāo)卡尺,車刀2101000.211描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間5精車45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床CA6140夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1精車56外圓柱面至CA6140,外徑千分尺9101600.1802522精車61外圓柱面至CA6140,外徑千分尺630120.80.150.2523精車66外圓柱面至CA6140,外徑千分尺580120.380.180.2524精車76外圓柱面至CA6140,外徑千分尺500119.480.150.252描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間4鉸孔45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床CA6140夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1精鉸左端面中心孔鉸刀,內(nèi)徑千分尺40030.20.330.512精鉸右端面中心孔鉸刀,內(nèi)徑千分尺40030.20.330.51345描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間6精鉸45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床CA6140夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1精鏜79.5的內(nèi)孔至8048070.340.330.2522345描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間7鉆孔45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床Z525夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1鉆孔10x10到16CA6140,游標(biāo)卡尺,40923.10.22312擴孔10x16到19CA6140,游標(biāo)卡尺,500300.251.513鉸孔10x19到CA6140,游標(biāo)卡尺,58036.40.30.25245,6描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間9鉆孔45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床Z525夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1鉆斜孔到8游標(biāo)卡尺,麻花鉆80070.450.55412鉆另一斜孔到8游標(biāo)卡尺,麻花鉆80070.450.5541345描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期機械加工工序卡片文件編號機械學(xué)院機械加工工藝過程卡片產(chǎn)品型號零(部)件圖號共 1 頁產(chǎn)品名稱輸出軸零(部)件名稱輸出軸第 1 頁車間工序號工序名稱材料牌號金工車間8銑鍵槽45鋼毛坯種類毛坯外形尺寸每坯件數(shù)每臺件數(shù)鍛件11設(shè)備名稱設(shè)備型號設(shè)備編號同時加工件數(shù)車床x61w夾具編號夾具名稱冷卻液1專用夾具工序時間準(zhǔn)終單件工步號工步內(nèi)容工藝裝備主軸轉(zhuǎn)速/(r/min)切削速度/(m/min)進(jìn)給量/(mm/r)背吃刀量/(mm)走刀次數(shù)工時定額基本輔助1粗銑鍵槽50x10CA6140,游標(biāo)卡尺,945891.5512半精銑鍵槽50x14CA6140,游標(biāo)卡尺,10001500.7213精銑鍵槽到為R3.2CA6140,游標(biāo)卡尺,12251530.550.524,56描圖描校底圖號裝訂號*編制(日期)審核(日期)會簽(日期)*a標(biāo)記處數(shù)更改文件號簽字日期標(biāo)記處數(shù)更改文件號簽字日期Robotics and Computer-Integrated Manufacturing 21 (2005) 368378Locating completeness evaluation and revision in fixture planH. Song?, Y. RongCAM Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USAReceived 14 September 2004; received in revised form 9 November 2004; accepted 10 November 2004AbstractGeometry constraint is one of the most important considerations in fixture design. Analytical formulation of deterministiclocation has been well developed. However, how to analyze and revise a non-deterministic locating scheme during the process ofactual fixture design practice has not been thoroughly studied. In this paper, a methodology to characterize fixturing systemsgeometry constraint status with focus on under-constraint is proposed. An under-constraint status, if it exists, can be recognizedwith given locating scheme. All un-constrained motions of a workpiece in an under-constraint status can be automatically identified.This assists the designer to improve deficit locating scheme and provides guidelines for revision to eventually achieve deterministiclocating.r 2005 Elsevier Ltd. All rights reserved.Keywords: Fixture design; Geometry constraint; Deterministic locating; Under-constrained; Over-constrained1. IntroductionA fixture is a mechanism used in manufacturing operations to hold a workpiece firmly in position. Being a crucialstep in process planning for machining parts, fixture design needs to ensure the positional accuracy and dimensionalaccuracy of a workpiece. In general, 3-2-1 principle is the most widely used guiding principle for developing a locationscheme. V-block and pin-hole locating principles are also commonly used.A location scheme for a machining fixture must satisfy a number of requirements. The most basic requirement is thatit must provide deterministic location for the workpiece 1. This notion states that a locator scheme producesdeterministic location when the workpiece cannot move without losing contact with at least one locator. This has beenone of the most fundamental guidelines for fixture design and studied by many researchers. Concerning geometryconstraint status, a workpiece under any locating scheme falls into one of the following three categories:1. Well-constrained (deterministic): The workpiece is mated at a unique position when six locators are made to contactthe workpiece surface.2. Under-constrained: The six degrees of freedom of workpiece are not fully constrained.3. Over-constrained: The six degrees of freedom of workpiece are constrained by more than six locators.In 1985, Asada and By 1 proposed full rank Jacobian matrix of constraint equations as a criterion and formed thebasis of analytical investigations for deterministic locating that followed. Chou et al. 2 formulated the deterministiclocating problem using screw theory in 1989. It is concluded that the locating wrenches matrix needs to be full rank toachieve deterministic location. This method has been adopted by numerous studies as well. Wang et al. 3 consideredARTICLE IN PRESS/locate/rcim0736-5845/$-see front matter r 2005 Elsevier Ltd. All rights reserved.doi:10.1016/j.rcim.2004.11.012?Corresponding author. Tel.: +15088316092; fax: +15088316412.E-mail address: hsong (H. Song).locatorworkpiece contact area effects instead of applying point contact. They introduced a contact matrix andpointed out that two contact bodies should not have equal but opposite curvature at contacting point. Carlson 4suggested that a linear approximation may not be sufficient for some applications such as non-prismatic surfaces ornon-small relative errors. He proposed a second-order Taylor expansion which also takes locator error interaction intoaccount. Marin and Ferreira 5 applied Chous formulation on 3-2-1 location and formulated several easy-to-followplanning rules. Despite the numerous analytical studies on deterministic location, less attention was paid to analyzenon-deterministic location.In the Asada and Bys formulation, they assumed frictionless and point contact between fixturing elements andworkpiece. The desired location is q*, at which a workpiece is to be positioned and piecewisely differentiable surfacefunction is gi(as shown in Fig. 1).The surface function is defined as giq? 0: To be deterministic, there should be a unique solution for the followingequation set for all locators.giq 0;i 1;2;.;n,(1)where n is the number of locators and q x0;y0;z0;y0;f0;c0? represents the position and orientation of theworkpiece.Only considering the vicinity of desired location q?; where q q? Dq; Asada and By showed thatgiq giq? hiDq,(2)where hiis the Jacobian matrix of geometry functions, as shown by the matrix in Eq. (3). The deterministic locatingrequirement can be satisfied if the Jacobian matrix has full rank, which makes the Eq. (2) to have only one solutionq q?:rankqg1qx0qg1qy0qg1qz0qg1qy0qg1qf0qg1qc0:qgiqx0qgiqy0qgiqz0qgiqy0qgiqf0qgiqc0:qgnqx0qgnqy0qgnqz0qgnqy0qgnqf0qgnqc026666666664377777777758:9=; 6.(3)Upon given a 3-2-1 locating scheme, the rank of a Jacobian matrix for constraint equations tells the constraint statusas shown in Table 1. If the rank is less than six, the workpiece is under-constrained, i.e., there exists at least one freemotion of the workpiece that is not constrained by locators. If the matrix has full rank but the locating scheme hasmore than six locators, the workpiece is over-constrained, which indicates there exists at least one locator such that itcan be removed without affecting the geometry constrain status of the workpiece.For locating a model other than 3-2-1, datum frame can be established to extract equivalent locating points. Hu 6has developed a systematic approach for this purpose. Hence, this criterion can be applied to all locating schemes.ARTICLE IN PRESSX Y Z O X Y Z O (x0,y0,z0) gi UCS WCS Workpiece Fig. 1. Fixturing system model.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378369Kang et al. 7 followed these methods and implemented them to develop a geometry constraint analysis module intheir automated computer-aided fixture design verification system. Their CAFDV system can calculate the Jacobianmatrix and its rank to determine locating completeness. It can also analyze the workpiece displacement and sensitivityto locating error.Xiong et al. 8 presented an approach to check the rank of locating matrix WL(see Appendix). They also intro-duced left/right generalized inverse of the locating matrix to analyze the geometric errors of workpiece. It hasbeen shown that the position and orientation errors DX of the workpiece and the position errors Dr of locators arerelated as follows:Well-constrained :DX WLDr,(4)Over-constrained :DX WTLWL?1WTLDr,(5)Under-constrained :DX WTLWLWTL?1Dr I6?6? WTLWLWTL?1WLl,(6)where l is an arbitrary vector.They further introduced several indexes derived from those matrixes to evaluate locator configurations, followed byoptimization through constrained nonlinear programming. Their analytical study, however, does not concern therevision of non-deterministic locating. Currently, there is no systematic study on how to deal with a fixture design thatfailed to provide deterministic location.2. Locating completeness evaluationIf deterministic location is not achieved by designed fixturing system, it is as important for designers to knowwhat the constraint status is and how to improve the design. If the fixturing system is over-constrained, informa-tion about the unnecessary locators is desired. While under-constrained occurs, the knowledge about all the un-constrained motions of a workpiece may guide designers to select additional locators and/or revise the locatingscheme more efficiently. A general strategy to characterize geometry constraint status of a locating scheme is describedin Fig. 2.In this paper, the rank of locating matrix is exerted to evaluate geometry constraint status (see Appendixfor derivation of locating matrix). The deterministic locating requires six locators that provide full rank locatingmatrix WL:As shown in Fig. 3, for given locator number n; locating normal vector ai;bi;ci? and locating position xi;yi;zi? foreach locator, i 1;2;.;n; the n ? 6 locating matrix can be determined as follows:WLa1b1c1c1y1? b1z1a1z1? c1x1b1x1? a1y1:aibiciciyi? biziaizi? cixibixi? aiyi:anbncncnyn? bnznanzn? cnxnbnxn? anyn2666666437777775.(7)When rankWL 6 and n 6; the workpiece is well-constrained.When rankWL 6 and n46; the workpiece is over-constrained. This means there are n ? 6 unnecessary locatorsin the locating scheme. The workpiece will be well-constrained without the presence of those n ? 6 locators. Themathematical representation for this status is that there are n ? 6 row vectors in locating matrix that can be expressedas linear combinations of the other six row vectors. The locators corresponding to that six row vectors consist oneARTICLE IN PRESSTable 1RankNumber of locatorsStatuso 6Under-constrained 6 6Well-constrained 646Over-constrainedH. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378370locating scheme that provides deterministic location. The developed algorithm uses the following approach todetermine the unnecessary locators:1. Find all the combination of n ? 6 locators.2. For each combination, remove that n ? 6 locators from locating scheme.3. Recalculate the rank of locating matrix for the left six locators.4. If the rank remains unchanged, the removed n ? 6 locators are responsible for over-constrained status.This method may yield multi-solutions and require designer to determine which set of unnecessary locators shouldbe removed for the best locating performance.When rankWLo6; the workpiece is under-constrained.3. Algorithm development and implementationThe algorithm to be developed here will dedicate to provide information on un-constrained motions of theworkpiece in under-constrained status. Suppose there are n locators, the relationship between a workpieces position/ARTICLE IN PRESSFig. 2. Geometry constraint status characterization.X Z Y (a1,b1,c1) 2,b2,c2) (x1,y1,z1) (x2,y2,z2) (ai,bi,ci) (xi,yi,zi) (aFig. 3. A simplified locating scheme.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378371orientation errors and locator errors can be expressed as follows:DX DxDyDzaxayaz2666666666437777777775w11:w1i:w1nw21:w2i:w2nw31:w3i:w3nw41:w4i:w4nw51:w5i:w5nw61:w6i:w6n2666666666437777777775?Dr1:Dri:Drn2666666437777775,(8)where Dx;Dy;Dz;ax;ay;azare displacement along x, y, z axis and rotation about x, y, z axis, respectively. Driisgeometric error of the ith locator. wijis defined by right generalized inverse of the locating matrix Wr WTLWLWTL?15.To identify all the un-constrained motions of the workpiece, V dxi;dyi;dzi;daxi;dayi;dazi? is introduced such thatV DX 0.(9)Since rankDXo6; there must exist non-zero V that satisfies Eq. (9). Each non-zero solution of V represents an un-constrained motion. Each term of V represents a component of that motion. For example, 0;0;0;3;0;0? says that therotation about x-axis is not constrained. 0;1;1;0;0;0? means that the workpiece can move along the direction given byvector 0;1;1?: There could be infinite solutions. The solution space, however, can be constructed by 6 ? rankWLbasic solutions. Following analysis is dedicated to find out the basic solutions.From Eqs. (8) and (9)VX dxDx dyDy dzDz daxDax dayDay dazDaz dxXni1w1iDri dyXni1w2iDri dzXni1w3iDri daxXni1w4iDri dayXni1w5iDri dazXni1w6iDriXni1Vw1i;w2i;w3i;w4i;w5i;w6i?TDri 0.10Eq. (10) holds for 8Driif and only if Eq. (11) is true for 8i1pipn:Vw1i;w2i;w3i;w4i;w5i;w6i?T 0.(11)Eq. (11) illustrates the dependency relationships among row vectors of Wr: In special cases, say, all w1jequal to zero,V has an obvious solution 1, 0, 0, 0, 0, 0, indicating displacement along the x-axis is not constrained. This is easy tounderstand because Dx 0 in this case, implying that the corresponding position error of the workpiece is notdependent of any locator errors. Hence, the associated motion is not constrained by locators. Moreover, a combinedmotion is not constrained if one of the elements in DX can be expressed as linear combination of other elements. Forinstance, 9w1ja0;w2ja0; w1j ?w2jfor 8j: In this scenario, the workpiece cannot move along x- or y-axis. However, itcan move along the diagonal line between x- and y-axis defined by vector 1, 1, 0.To find solutions for general cases, the following strategy was developed:1. Eliminate dependent row(s) from locating matrix. Let r rank WL; n number of locator. If ron; create a vectorin n ? r dimension space U u1:uj:un?rhi1pjpn ? r; 1pujpn: Select ujin the way that rankWL r still holds after setting all the terms of all the ujth row(s) equal to zero. Set r ? 6 modified locating matrixWLMa1b1c1c1y1? b1z1a1z1? c1x1b1x1? a1y1:aibiciciyi? biziaizi? cixibixi? aiyi:anbncncnyn? bnznanzn? cnxnbnxn? anyn2666666437777775r?6,where i 1;2;:;niauj:ARTICLE IN PRESSH. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 3683783722. Compute the 6 ? n right generalized inverse of the modified locating matrixWr WTLMWLMWTLM?1w11:w1i:w1rw21:w2i:w2rw31:w3i:w3rw41:w4i:w4rw51:w5i:w5rw61:w6i:w6r26666666664377777777756?r3. Trim Wrdown to a r ? rfull rank matrix Wrm: r rankWLo6: Construct a 6 ? r dimension vector Q q1:qj:q6?rhi1pjp6 ? r; 1pqjpn: Select qjin the way that rankWr r still holds after setting all theterms of all the qjth row(s) equal to zero. Set r ? r modified inverse matrixWrmw11:w1i:w1r:wl1:wli:wlr:w61:w6i:w6r26666664377777756?6,where l 1;2;:;6 laqj:4. Normalize the free motion space. Suppose V V1;V2;V3;V4;V5;V6? is one of the basic solutions of Eq. (10) withall six terms undetermined. Select a term qkfrom vector Q1pkp6 ? r: SetVqk ?1;Vqj 0 j 1;2;:;6 ? r;jak;(5. Calculated undetermined terms of V: V is also a solution of Eq. (11). The r undetermined terms can be found asfollows.v1:vs:v62666666437777775wqk1:wqki:wqkr2666666437777775?w11:w1i:w1r:wl1:wli:wlr:w61:w6i:w6r2666666437777775?1,where s 1;2;:;6saqj;saqk;l 1;2;:;6 laqj:6. Repeat step 4 (select another term from Q) and step 5 until all 6 ? r basic solutions have been determined.Based on this algorithm, a C+ program was developed to identify the under-constrained status and un-constrained motions.Example 1. In a surface grinding operation, a workpiece is located on a fixture system as shown in Fig. 4. The normalvector and position of each locator are as follows:L1:0, 0, 10, 1, 3, 00,L2:0, 0, 10, 3, 3, 00,L3:0, 0, 10, 2, 1, 00,L4:0, 1, 00, 3, 0, 20,L5:0, 1, 00, 1, 0, 20.Consequently, the locating matrix is determined.WL0013?100013?300011?20010?203010?2012666666437777775.ARTICLE IN PRESSH. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378373This locating system provides under-constrained positioning since rankWL 5o6: The program then calculatesthe right generalized inverse of the locating matrix.Wr000000:50:5?1?0:51:50:75?1:251:5000:250:25?0:5000:5?0:50000000:5?0:526666666643777777775.The first row is recognized as a dependent row because removal of this row does not affect rank of the matrix. Theother five rows are independent rows. A linear combination of the independent rows is found according therequirement in step 5 of the procedure for under-constrained status. The solution for this special case is obvious that allthe coefficients are zero. Hence, the un-constrained motion of workpiece can be determined as V ?1; 0; 0; 0; 0; 0?:This indicates that the workpiece can move along x direction. Based on this result, an additional locator should beemployed to constraint displacement of workpiece along x-axis.Example 2. Fig. 5 shows a knuckle with 3-2-1 locating system. The normal vector and position of each locator in thisinitial design are as follows:L1:0, 1, 00, 896, ?877, ?5150,L2:0, 1, 00, 1060, ?875, ?3780,L3:0, 1, 00, 1010, ?959, ?6120,L4:0.9955, ?0.0349, 0.0880, 977, ?902, ?6240,L5:0.9955, ?0.0349, 0.0880, 977, ?866, ?6240,L6:0.088, 0.017, ?0.9960, 1034, ?864, ?3590.The locating matrix of this configuration isWL010515:000:8960010378:001:0600010612:001:01000:9955?0:03490:0880?101:2445?707:26640:86380:9955?0:03490:0880?98:0728?707:26640:82800:08800:0170?0:9960866:6257998:24660:093626666666643777777775,rankWL 5o6 reveals that the workpiece is under-constrained. It is found that one of the first five rows can beremoved without varying the rank of locating matrix. Suppose the first row, i.e., locator L1is removed from WL; theARTICLE IN PRESSXZYL3L4L5L2L1Fig. 4. Under-constrained locating scheme.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378374modified locating matrix turns intoWLM010378:001:0600010612:001:01000:9955?0:03490:0880?101:2445?707:26640:86380:9955?0:03490:0880?98:0728?707:26640:82800:08800:0170?0:996866:6257998:24660:09362666666437777775.The right generalized inverse of the modified locating matrix isWr1:8768?1:8607?20:666521:37160:49953:0551?2:0551?32:444832:44480?1:09561:086212:0648?12:4764?0:2916?0:00440:00440:0061?0:006100:0025?0:00250:0065?0:00690:0007?0:00040:00040:0284?0:0284026666666643777777775.The program checked the dependent row and found every row is dependent on other five rows. Without losinggenerality, the first row is regarded as dependent row. The 5 ? 5 modified inverse matrix isWrm3:0551?2:0551?32:444832:44480?1:09561:086212:0648?12:4764?0:2916?0:00440:00440:0061?0:006100:0025?0:00250:0065?0:00690:0007?0:00040:00040:0284?0:028402666666437777775.The undetermined solution is V ?1; v2; v3; v4; v5; v6?:To calculate the five undetermined terms of V according to step 5,1:8768?1:8607?20:666521:37160:499526666666643777777775T?3:0551?2:0551?32:444832:44480?1:09561:086212:0648?12:4764?0:2916?0:00440:00440:0061?0:006100:0025?0:00250:0065?0:00690:0007?0:00040:00040:0284?0:0284026666666643777777775?1 0; ?1:713; ?0:0432; ?0:0706; 0:04?.Substituting this result into the undetermined solution yields V ?1;0; ?1:713; ?0:0432; ?0:0706; 0:04?ARTICLE IN PRESSFig. 5. Knuckle 610 (modified from real design).H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378375This vector represents a free motion defined by the combination of a displacement along ?1, 0, ?1.713 directioncombined and a rotation about ?0.0432, ?0.0706, 0.04. To revise this locating configuration, another locator shouldbe added to constrain this free motion of the workpiece, assuming locator L1was removed in step 1. The program canalso calculate the free motions of the workpiece if a locator other than L1was removed in step 1. This provides morerevision options for designer.4. SummaryDeterministic location is an important requirement for fixture locating scheme design. Analytical criterion fordeterministic status has been well established. To further study non-deterministic status, an algorithm for checking thegeometry constraint status has been developed. This algorithm can identify an under-constrained status and indicatethe un-constrained motions of workpiece. It can also recognize an over-constrained status and unnecessary locators.The output information can assist designer to analyze and improve an existing locating scheme.Appendix. Locating matrixConsider a general workpiece as shown in Fig. 6. Choose reference frame fWg fixed to the workpiece. Let fGg andfLig be the global frame and the ith locator frame fixed relative to it. We haveFiXw;Hw;rwi fiXli;Hli;rli,(12)where Xw2 3?1and Hw2 3?1(Xli2 3?1and Hli2 3?1) are the position and orientation of the workpiece(the ith locator) in the global frame fGg; rwi2 3?1(rli2 3?1) is the position of the ith contact point between theworkpiece and the ith locator in the workpiece frame fWg (the ith locator frame fLig).Assume that DXw2 3?1(DHw2 3?1) and Drwi2 3?1are the deviations of the position Xw2 3?1(orientationHw2 3?1) of the workpiece and the position of the ith contact point rwi2 3?1; respectively. Then we have the actualcontact on the workpiece,FiXw DXw;Hw DHw;rwi Drwi FiXw;Hw;rwi qFiqXwDXwqFiqHwDHwqFiqrwiDrwi,13where the second term in the right side of Eq. (13) is the position error of the ith contact point resulting from theposition error DXwof the workpiece, the third term is the position error of the ith contact point resulting from theorientation error DHwof the workpiece, and the fourth term is the position error of the ith contact point resulting fromits workpiece geometric variation Drwion the workpiece.Similarly, assume that DXli2 3?1DHli2 3?1 and Drli2 3?1are the deviations of the position Xli2 3?1(orientation Hli2 3?1) of the ith locator and the position of the ith contact point rli2 3?1; respectively. The actualcontact on the ith locator isfiXli DXli;Hli DHli;rli Drli fiXli;Hli;rli qfiqXliDXliqfiqHliDHliqfiqrliDrli,14ARTICLE IN PRESSworkpieceith locator Win iLiwrilr GilXwXwX wFig. 6. Fixture coordinate frames.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378376where the second term in the right side of Eq. (14) is the position error of the
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
提示  人人文庫網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
關(guān)于本文
本文標(biāo)題:輸出軸零件的機械加工工藝規(guī)程及工藝裝備設(shè)計
鏈接地址:http://m.bubsandbeans.com/paper/87696596.html

官方聯(lián)系方式

2:不支持迅雷下載,請使用瀏覽器下載   
3:不支持QQ瀏覽器下載,請用其他瀏覽器   
4:下載后的文檔和圖紙-無水印   
5:文檔經(jīng)過壓縮,下載后原文更清晰   
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

網(wǎng)站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文庫版權(quán)所有   聯(lián)系電話:400-852-1180

備案號:蜀ICP備2022000484號-2       經(jīng)營許可證: 川B2-20220663       公網(wǎng)安備川公網(wǎng)安備: 51019002004831號

本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知人人文庫網(wǎng),我們立即給予刪除!