高一數(shù)學直線與圓的方程的應用 新課標 人教版_第1頁
高一數(shù)學直線與圓的方程的應用 新課標 人教版_第2頁
高一數(shù)學直線與圓的方程的應用 新課標 人教版_第3頁
高一數(shù)學直線與圓的方程的應用 新課標 人教版_第4頁
高一數(shù)學直線與圓的方程的應用 新課標 人教版_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、高一數(shù)學直線與圓的方程的應用學習目標主要概念:坐標法建立適當?shù)闹苯亲鴺讼岛?,借助代?shù)方法把要研究的幾何問題,轉化為坐標之間的運算,由此解決幾何問題。教材分析一、重點難點本節(jié)教材的教學重點是掌握直線和圓的方程在實際生活中的應用,以及用坐標法研究幾何問題的基本思想。難點是如何把一個實際問題轉化為數(shù)學問題,即數(shù)學建模,以及在運用坐標法證明幾何問題時,如何能根據(jù)具體問題靈活地建立適當?shù)闹苯亲鴺讼?。二、教材解讀本節(jié)教材的理論知識有問題提出、題型介紹、思考交流三個板塊組成。第一板塊 問題提出解讀直線與圓的方程在生產(chǎn)、生活實踐以及數(shù)學中有著廣泛的應用。理解、掌握知識的最終目的在于應用,通過知識的應用,問題的

2、解決,一方面可使學生親身體驗到學習數(shù)學的意義和作用,培養(yǎng)學生學習的自覺性;另一方面聯(lián)系實際的目的就是為了更好地掌握基礎知識,增加用數(shù)學的意識,培養(yǎng)分析問題和解決問題的能力。第二板塊 題型介紹解讀直線與圓的方程在實際生活以及平面幾何中的應用通過介紹直線與圓的方程在實際生活中的應用,其目的在于讓學生了解應用問題就是在已學數(shù)學知識的基礎上,從實際問題出發(fā),經(jīng)過去粗取精、抽象概括,把實際問題抽象成數(shù)學問題,建立相應的數(shù)學模型。讓學生掌握解決實際問題的全過程,提高學生分析問題和解決問題的能力。通過介紹直線與圓的方程在平面幾何中的應用,其目的在于讓學生了解坐標法的數(shù)學思想,掌握用坐標法解決平面幾何問題的“

3、三步曲”,讓學生從另一個角度再次體會“數(shù)形結合”的思想方法。第三板塊 思考交流解讀課本P.138例4中提出:如果不建立坐標系,你能解決這個問題嗎?通過讓學生思考和解答,試圖讓學生比較坐標法和幾何法在解決這一問題時的優(yōu)劣,從而發(fā)現(xiàn)坐標法在解決一些問題時的優(yōu)越性。拓展閱讀數(shù)學來源于實際又服務于實際,新的課程標準越來越注意對學生在數(shù)學素養(yǎng)、數(shù)學能力方面的要求,要求學生能應用數(shù)學知識、觀點、方法去處理實際問題,從而把數(shù)學的應用與大眾生活緊密地結合起來,使數(shù)學教學更具有現(xiàn)實意義與教育意義。在現(xiàn)行中學數(shù)學教學大綱中提到:“使學生學好從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代科學技術所必需的數(shù)學基礎知識和基本技

4、能,培養(yǎng)學生的運算能力,以逐步形成應用數(shù)學知識來培養(yǎng)分析和解決實際問題的能力”。1993年國家教委基礎教育課程教材研究中心召開的“數(shù)學課程內(nèi)容改革研討會”上也強調(diào)“數(shù)學教學應聯(lián)系實際”,“要重視從實際問題中建立數(shù)學模型,解決數(shù)學問題,從而解決實際問題這個全過程。”當前國際數(shù)學教育界提出了“大眾數(shù)學”的口號,其目的是根據(jù)社會對數(shù)學的不同需求,發(fā)揮數(shù)學在解決實際問題中的作用提高學生學習數(shù)學的興趣,支持和引導中學數(shù)學從學生所熟悉的生活、生產(chǎn)和其它學科的實際問題出發(fā),進行觀察、比較、分析、綜合、抽象、概括和必要的邏輯推理,得出數(shù)學概念和規(guī)律,使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步把數(shù)學知識應用

5、到生產(chǎn)、生活的實際,形成應用數(shù)學的意識,培養(yǎng)分析問題和解決問題的能力。隨著科學技術的進步,特別是計算機技術的迅速發(fā)展,數(shù)學已經(jīng)滲透到從自然科學技術到工農(nóng)業(yè)生產(chǎn)建設,從經(jīng)濟活動到社會活動的各個領域。而建立數(shù)學模型則是數(shù)學應用的關鍵環(huán)節(jié)。所謂數(shù)學模型就是對于現(xiàn)實世界的一個特定的對象,為了一個特定的目的,根據(jù)特有的內(nèi)在規(guī)律,做出一些必要的簡化假設,運用適當?shù)臄?shù)學工具,得到的一個數(shù)學結構。建立數(shù)學模型的過程可以分為表述、求解、解釋、驗證幾個階段,并且通過這些階段完成從現(xiàn)實對象到數(shù)學模型,再從數(shù)學模型回到現(xiàn)實對象的循環(huán)?,F(xiàn)實對象的信息表述(歸納)數(shù)學模型現(xiàn)實對象的解答數(shù)學模型的解答求解 (演繹)解釋驗證

6、 由此可知,解決數(shù)學應用問題可分為三個步驟:一是審題;二是建立數(shù)學模型;三是求解數(shù)學模型。其中審題是基礎,建立數(shù)學模型是關鍵,解題是目標。綜上所述,我們可以利用數(shù)學模型的方法來解決數(shù)學應用問題。網(wǎng)站點擊 典型例題解析例1:在平行四邊形ABCD中,用坐標法證明:。點撥用坐標法證題的關鍵是選擇適當?shù)闹苯亲鴺讼?,設出關鍵的點的坐標(或曲線的方程),據(jù)此推出未知的點的坐標,再通過代數(shù)計算證明所要求證的結論。解答以CA所在的直線為x軸,線段CA的中點O為坐標原點,建立如圖所示的平面直角坐標系。OACBDxy 設A(, 0),B(, ), 則C(, 0), D(, ). =2()=2= 總結用坐標法證題的

7、關鍵是選擇適當?shù)闹苯亲鴺讼?,直角坐標系的建立一般遵循下列原則:(1)原點取在定點,坐標軸以定直線或定線段所在的直線或圖形的對稱軸;(2)盡量利用圖形的對稱性;(3)設出所需點的坐標時,能使所用的字母盡量少。用坐標法證題時,不能把一般情況視為特殊情況,如本題中如把平行四邊形ABCD視為矩形或正方形加以證明,就失去了一般性。變式題演練圖1422965463O1OxyCyAB9圖2等腰直角三角形ABC中,BD是AC邊上的中線,AEBD交BC于E,用坐標法證明:。例2: 船行前方的河道上有一座圓拱橋,在正常水位時,拱圈最高點距水面為9m,拱圈內(nèi)水面寬22m船只在水面以上部分高6.5m、船頂部寬4m,故

8、通行無阻近日水位暴漲了2.7m,船已經(jīng)不能通過橋洞了船員必須加重船載,降低船身試問船身必須降低多少,才能順利地通過橋洞?點撥當船行駛在河道的正中央時,要使船能夠通過橋洞的最低要求是船頂最寬處的角點在圓拱橋的拱圈上。解答 畫出正常水位時的橋、船的示意圖如圖1;漲水后橋、船的示意圖如圖2 以正常水位時河道中央為原點,建立如圖2所示的坐標系 設橋拱圓頂?shù)膱A心在O1(x1,y1),則x1=0,因此橋拱圓頂在坐標系中的方程為x2+(y-y1)2=r2其中 r為橋拱半徑 橋拱最高點B的坐標為(0,9),橋拱與水線的交點A的坐標為(11,0)圓O1過點A,B,因此 02+(9-y1)2=r2,112+(0-

9、y1)2=r2,兩式相減后得 121+18y1-81=0, y1=-2.22;回代到兩個方程之一,即可解出r11.22所以橋拱圓頂?shù)姆匠淌?x2+(y+2.22)2=125.94 當船行駛在河道的正中央時,船頂最寬處角點C的坐標為(x,y),則x=2使船能通過橋洞的最低要求,是點C正好的圓O1上,因此C(2,y)應滿足圓O1的方程,即 22+(y+2.22)2=125.94,解出 y8.82扣除水面上漲的2.70, 點C距水面為8.82-2.70=6.12 船身在水面以上部分原高6.5,所以為使船能通過橋洞,必須降低船身6.5-6.12=0.38(m)以上 總結求解本題的關鍵是要得到橋拱圓的方

10、程,有了圓的方程,計算點C距水面高度等,問題就迎刃而解了 變式題演練據(jù)氣象臺預報:在A市正東方向300km的B處有一臺風中心形成,并以每小時40km的速度向西北方向移動。在距臺風中心250km以內(nèi)的地區(qū)將受其影響,問從現(xiàn)在起經(jīng)過多長時間,臺風將影響A市?持續(xù)時間多長?答案:以A為圓心,250km為半徑作A,當臺風中心移動經(jīng)過的直線與A相交或相切時,A市將受到臺風影響。以A為坐標原點,正東方向為x軸,建立直角坐標系,則A點的坐標為(0,0),B點坐標為(300,0),A的方程為,直線的方程為(即(當點C(在A上或A內(nèi)時,有即,解之,得近似地,得8.6-2.0=6.6這樣,大約在2小時后,臺風將影

11、響A市,并持續(xù)約6.6小時。例3:求一宇宙飛船的軌道,使得在軌道上任一點處看地球和月球的視角都相等。OABM(x, y)yx點撥所謂在一點處看地球的視角,在數(shù)學上反映即從此點處所引的關于地球的兩條切線間的夾角,故本題可從兩個視角相等得到軌道上任一點應該滿足的條件。解答設地球和月球的半徑分別為R、r,球心距為d,以地球、月球球心連線的中點為原點,連線所在直線為x軸,建立平面直角坐標系(如圖).設地球大圓圓心,月球大圓圓心,軌道上任一點M(x, y),從M點向圓作切線,切點為A,從M點向圓作切線,切點為B,由題意知,整理得滿足條件的宇宙飛船的運行軌道為圓??偨Y本題實質(zhì)是一道求軌跡方程的問題,但在解

12、題時關鍵是要審清題意,理解視角的概念,建立適當?shù)闹苯亲鴺讼担‘數(shù)剡\用平面幾何知識,以簡化運算。變式題演練有相距100km的A、B兩個批發(fā)市場,商品的價格相同,但在某地區(qū)居民從兩地運回商品時,A地的單位距離的運費是B地的2倍。問怎樣確定A、B兩批發(fā)市場的售貨區(qū)域?qū)Ξ數(shù)鼐用裼欣??答案:建立以AB所在直線為x軸,AB中點為原點的直角坐標系,則A(50,0),B(50,0)。設P(x, y),由2PAPB,得所以在圓內(nèi)到A地購物合算;在圓外到B地購物合算;在圓上到A、B兩地購物一樣合算。知識結構知識點圖表直線和圓的方程的應用在平面幾何中的應用在實際生活中的應用數(shù)學建模坐標法學法指導1、 數(shù)學建模分析

13、的步驟: (1)讀懂題目。應包括對題意的整體理解和局部理解,以及分析關系、領悟?qū)嵸|(zhì)。 “整體理解”就是弄清題目所述的事件和研究對象; “局部理解”是指抓住題目中的關鍵字句,正確把握其含義; “分析關系”就是根據(jù)題意,弄清題中各有關量的數(shù)量關系或空間形式; “領悟?qū)嵸|(zhì)”是指抓住題目中的主要問題,正確識別其類型。 (2)建立數(shù)學模型。將實際問題抽象為數(shù)學問題,建模的直接準備就是審題的最后階段,從各種關系中找出最關鍵的數(shù)量關系,將此關系用有關的量及數(shù)字、符號表示出來,即可得到解決問題的數(shù)學模型。 (3)求解數(shù)學模型。根據(jù)所建立的數(shù)學模型,選擇合適的數(shù)學方法,設計合理簡捷的運算途徑,求出數(shù)學問題的解,其中特別注意實際問題中對變量范圍的限制及其他約束條件。 (4)檢驗。既要檢驗所得結果是否適合數(shù)學模型,又要評判所得結果是否符合實際問題的要求,從而對原問題作出合乎實際

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論