




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、初二數(shù)學(xué)(下)應(yīng)知應(yīng)會(huì)的知識(shí)點(diǎn) 二次根式1二次根式:一般地,式子叫做二次根式.注意:(1)若這個(gè)條件不成立,則 不是二次根式;(2)是一個(gè)重要的非負(fù)數(shù),即; 0.2重要公式:(1),(2) ;注意使用.3積的算術(shù)平方根:,積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;注意:本章中的公式,對(duì)字母的取值范圍一般都有要求.4二次根式的乘法法則: .5二次根式比較大小的方法:(1)利用近似值比大小;(2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大?。唬?)分別平方,然后比大小.6商的算術(shù)平方根:,商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.7二次根式的除法法則:(1);(2);(3)分母有
2、理化:化去分母中的根號(hào)叫做分母有理化;具體方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?8常用分母有理化因式: , ,它們也叫互為有理化因式.9最簡(jiǎn)二次根式:(1)滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式, 被開方數(shù)的因數(shù)是整數(shù),因式是整式, 被開方數(shù)中不含能開的盡的因數(shù)或因式;(2)最簡(jiǎn)二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;(3)化簡(jiǎn)二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;(4)二次根式計(jì)算的最后結(jié)果必須化為最簡(jiǎn)二次根式.10二次根式化簡(jiǎn)題的幾種類型:(1)明顯條件題;(2)隱含條件題;(3)討論條件題.11同類二次根式:幾個(gè)
3、二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式.12二次根式的混合運(yùn)算:(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡(jiǎn),例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等.四邊形 幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)1四邊形的內(nèi)角和與外角和定理:(1)四邊形的內(nèi)角和等于360;(2)四邊形的外角和等于360.幾何表達(dá)式舉例:(1) A+B+C+D=360 (2
4、) 1+2+3+4=360 2多邊形的內(nèi)角和與外角和定理:(1)n邊形的內(nèi)角和等于(n-2)180;(2)任意多邊形的外角和等于360.幾何表達(dá)式舉例:略3平行四邊形的性質(zhì):因?yàn)锳BCD是平行四邊形幾何表達(dá)式舉例:(1) ABCD是平行四邊形ABCD ADBC(2) ABCD是平行四邊形AB=CD AD=BC(3) ABCD是平行四邊形ABC=ADC DAB=BCD(4) ABCD是平行四邊形OA=OC OB=OD(5) ABCD是平行四邊形CDA+BAD=1804.平行四邊形的判定:.幾何表達(dá)式舉例:(1) ABCD ADBC四邊形ABCD是平行四邊形(2) AB=CD AD=BC四邊形AB
5、CD是平行四邊形(3)5.矩形的性質(zhì):因?yàn)锳BCD是矩形(2)(1)(3)幾何表達(dá)式舉例:(1) (2) ABCD是矩形A=B=C=D=90(3) ABCD是矩形AC=BD6. 矩形的判定:四邊形ABCD是矩形. (1)(2) (3)幾何表達(dá)式舉例:(1) ABCD是平行四邊形又A=90四邊形ABCD是矩形(2) A=B=C=D=90四邊形ABCD是矩形(3) 7菱形的性質(zhì):因?yàn)锳BCD是菱形幾何表達(dá)式舉例:(1) (2) ABCD是菱形AB=BC=CD=DA(3) ABCD是菱形ACBD ADB=CDB8菱形的判定:四邊形四邊形ABCD是菱形.幾何表達(dá)式舉例:(1) ABCD是平行四邊形DA
6、=DC四邊形ABCD是菱形(2) AB=BC=CD=DA四邊形ABCD是菱形(3) ABCD是平行四邊形ACBD四邊形ABCD是菱形9正方形的性質(zhì):因?yàn)锳BCD是正方形 (1) (2)(3) 幾何表達(dá)式舉例:(1) (2) ABCD是正方形AB=BC=CD=DAA=B=C=D=90(3) ABCD是正方形AC=BD ACBD 10正方形的判定:四邊形ABCD是正方形. (3)ABCD是矩形又AD=AB 四邊形ABCD是正方形幾何表達(dá)式舉例:(1) ABCD是平行四邊形又AD=AB ABC=90四邊形ABCD是正方形(2) ABCD是菱形又ABC=90四邊形ABCD是正方形11等腰梯形的性質(zhì):因
7、為ABCD是等腰梯形 幾何表達(dá)式舉例:(1) ABCD是等腰梯形ADBC AB=CD(2) ABCD是等腰梯形ABC=DCBBAD=CDA(3) ABCD是等腰梯形AC=BD12等腰梯形的判定:四邊形ABCD是等腰梯形 (3)ABCD是梯形且ADBCAC=BDABCD四邊形是等腰梯形 幾何表達(dá)式舉例:(1) ABCD是梯形且ADBC又AB=CD四邊形ABCD是等腰梯形(2) ABCD是梯形且ADBC又ABC=DCB四邊形ABCD是等腰梯形13平行線等分線段定理與推論:(1)如果一組平行線在一條直線上截得的線段相等,那么在其它直線上截得的線段也相等;(2)經(jīng)過梯形一腰的中點(diǎn)與底平行的直線必平分另
8、一腰;(如圖)(3)經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊.(如圖) (2) (3)幾何表達(dá)式舉例:(1) (2) ABCD是梯形且ABCD又DE=EA EFABCF=FB(3) AD=DB又DEBCAE=EC14三角形中位線定理:三角形的中位線平行第三邊,并且等于它的一半.幾何表達(dá)式舉例:AD=DB AE=ECDEBC且DE=BC15梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.幾何表達(dá)式舉例:ABCD是梯形且ABCD又DE=EA CF=FBEFABCD且EF=(AB+CD)幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)一 基本概念:四邊形,四邊形的
9、內(nèi)角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對(duì)稱,中心對(duì)稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.二 定理:中心對(duì)稱的有關(guān)定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形.2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分.3如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱.三 公式: 1S菱形 =ab=ch.(a、b為菱形的對(duì)角線 ,c為菱形的邊長(zhǎng) ,h為c邊上的高)2S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)3S梯形 =(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為
10、梯形的中位線)四 常識(shí):1若n是多邊形的邊數(shù),則對(duì)角線條數(shù)公式是:.2規(guī)則圖形折疊一般“出一對(duì)全等,一對(duì)相似”.3如圖:平行四邊形、矩形、菱形、正方形的從屬關(guān)系.4常見圖形中,僅是軸對(duì)稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形 ;僅是中心對(duì)稱圖形的有:平行四邊形 ;是雙對(duì)稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 .注意:線段有兩條對(duì)稱軸.5梯形中常見的輔助線:6幾個(gè)常見的面積等式和關(guān)于面積的真命題:如圖:若ABCD是平行四邊形,且AEBC,AFCD那么:AEBC=AFCD.如圖:若ABC中,ACB=90,且CDAB,那么:ACBC=CDAB.如圖:若ABCD是菱形, 且BEAD,那么
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大班健康滾輪教案
- 新聞宣傳工作培訓(xùn)
- 中班幼兒健康碼認(rèn)知啟蒙繪本
- 小學(xué)健康教育課堂
- 降低內(nèi)瘺并發(fā)癥的精準(zhǔn)護(hù)理策略
- 企業(yè)數(shù)據(jù)指標(biāo)與標(biāo)簽體系應(yīng)用場(chǎng)景建設(shè)方案數(shù)據(jù)中臺(tái)數(shù)據(jù)智能應(yīng)用平臺(tái)
- 肺部腫物護(hù)理查房
- 裝備集團(tuán)應(yīng)用架構(gòu)規(guī)劃框架及系統(tǒng)集成方案
- 2025年電動(dòng)特種車項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 2025年金融租賃服務(wù)項(xiàng)目申請(qǐng)報(bào)告
- 早孕期產(chǎn)科超聲檢查規(guī)范
- 2025版心肺復(fù)蘇培訓(xùn)課件
- 冠心病介入治療術(shù)
- 2025至2030中國(guó)環(huán)氧活性稀釋劑市場(chǎng)未來趨勢(shì)及前景規(guī)劃建議報(bào)告
- 網(wǎng)絡(luò)安全攻防實(shí)戰(zhàn)考核試卷
- 2024-2025學(xué)年下學(xué)期高一化學(xué)蘇教版期末必刷??碱}之原電池與電解池
- 財(cái)稅代賬公司內(nèi)部管理制度
- 工廠安全手冊(cè)從火災(zāi)到其他事故的應(yīng)急響應(yīng)
- 2025至2030中國(guó)微晶玻璃行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢(shì)及投資規(guī)劃深度研究報(bào)告
- 2025江蘇省惠隆資產(chǎn)管理限公司招聘30人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- ISO 37001-2025 反賄賂管理體系要求及使用指南(中文版-雷澤佳譯-2025)
評(píng)論
0/150
提交評(píng)論