高考數(shù)學(xué)圓錐曲線專題復(fù)習(xí).doc_第1頁
高考數(shù)學(xué)圓錐曲線專題復(fù)習(xí).doc_第2頁
高考數(shù)學(xué)圓錐曲線專題復(fù)習(xí).doc_第3頁
高考數(shù)學(xué)圓錐曲線專題復(fù)習(xí).doc_第4頁
高考數(shù)學(xué)圓錐曲線專題復(fù)習(xí).doc_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、圓錐曲線一、知識結(jié)構(gòu)1.方程的曲線在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡 )上的點(diǎn)與一個二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系 若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y 0)=0;點(diǎn)P0(x0,y0)不在曲線C上f(x0,y0)0兩條曲線的交點(diǎn) 若曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則 f1(x0,y0)=0點(diǎn)P0(x0,y0)是C1,C

2、2的交點(diǎn) f2(x0,y0) =0方程組有n個不同的實(shí)數(shù)解,兩條曲線就有n個不同的交點(diǎn);方程組沒有實(shí)數(shù)解,曲線就沒有 交點(diǎn).2.圓圓的定義:點(diǎn)集:MOM=r,其中定點(diǎn)O為圓心,定長r為半徑.圓的方程:(1)標(biāo)準(zhǔn)方程圓心在c(a,b),半徑為r的圓方程是(x-a)2+(y-b)2=r2圓心在坐標(biāo)原點(diǎn),半徑為r的圓方程是x2+y2=r2(2)一般方程當(dāng)D2+E2-4F0時,一元二次方程x2+y2+Dx+Ey+F=0叫做圓的一般方程,圓心為(-,-),半徑是.配方,將方程x2+y2+Dx+Ey+F=0化為(x+)2+(y+)2=當(dāng)D2+E2-4F=0時,方程表示一個點(diǎn)(-,-);當(dāng)D2+E2-4F0

3、時,方程不表示任何圖形.點(diǎn)與圓的位置關(guān)系 已知圓心C(a,b),半徑為r,點(diǎn)M的坐標(biāo)為(x0,y0),則MCr點(diǎn)M在圓C內(nèi),MC=r點(diǎn)M在圓C上,MCr點(diǎn)M在圓C內(nèi),其中MC=.(3)直線和圓的位置關(guān)系直線和圓有相交、相切、相離三種位置關(guān)系直線與圓相交有兩個公共點(diǎn)直線與圓相切有一個公共點(diǎn)直線與圓相離沒有公共點(diǎn)直線和圓的位置關(guān)系的判定(i)判別式法(ii)利用圓心C(a,b)到直線Ax+By+C=0的距離d=與半徑r的大小關(guān)系來判定.3.橢圓、雙曲線和拋物線基本知識曲線性質(zhì)橢 圓雙曲線拋物線軌跡條件MMF1+MF2=2a,F1F22aMMF1-MF2.=2a,F2F22a.M MF=點(diǎn)M到直線l

4、的距離.圓 形標(biāo)準(zhǔn)方程+=1(ab0)-=1(a0,b0)y2=2px(p0)頂 點(diǎn)A1(-a,0),A2(a,0);B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)O(0,0)軸對稱軸x=0,y=0長軸長:2a短軸長:2b對稱軸x=0,y=0實(shí)軸長:2a 虛軸長:2b對稱軸y=0焦 點(diǎn)F1(-c,0),F2(c,0)焦點(diǎn)在長軸上F1(-c,0),F2(c,0)焦點(diǎn)在實(shí)軸上F(,0)焦點(diǎn)對稱軸上焦 距F1F2=2c,c=F1F2=2c,c=準(zhǔn) 線x=準(zhǔn)線垂直于長軸,且在橢圓外.x=準(zhǔn)線垂直于實(shí)軸,且在兩頂點(diǎn)的內(nèi)側(cè).x=-準(zhǔn)線與焦點(diǎn)位于頂點(diǎn)兩側(cè),且到頂點(diǎn)的距離相等.離心率e=,0

5、e1e=,e1e=1 4.圓錐曲線的統(tǒng)一定義平面內(nèi)的動點(diǎn)P(x,y)到一個定點(diǎn)F(c,0)的距離與到不通過這個定點(diǎn)的一條定直線l的距離之 比是一個常數(shù)e(e0),則動點(diǎn)的軌跡叫做圓錐曲線.其中定點(diǎn)F(c,0)稱為焦點(diǎn),定直線l稱為準(zhǔn)線,正常數(shù)e稱為離心率.當(dāng)0e1時,軌跡為橢圓,當(dāng)e=1時,軌跡為拋物線當(dāng)e1時,軌跡為雙曲線5.坐標(biāo)變換坐標(biāo)變換 在解析幾何中,把坐標(biāo)系的變換(如改變坐標(biāo)系原點(diǎn)的位置或坐標(biāo)軸的方向)叫做 坐標(biāo)變換.實(shí)施坐標(biāo)變換時,點(diǎn)的位置,曲線的形狀、大小、位置都不改變,僅僅只改變點(diǎn) 的坐標(biāo)與曲線的方程.坐標(biāo)軸的平移 坐標(biāo)軸的方向和長度單位不改變,只改變原點(diǎn)的位置,這種坐標(biāo)系的變

6、換叫 做坐標(biāo)軸的平移,簡稱移軸.坐標(biāo)軸的平移公式 設(shè)平面內(nèi)任意一點(diǎn)M,它在原坐標(biāo)系xOy中的坐標(biāo)是9x,y),在新坐標(biāo)系x Oy中的坐標(biāo)是(x,y).設(shè)新坐標(biāo)系的原點(diǎn)O在原坐標(biāo)系xOy中的坐標(biāo)是(h,k),則 x=x+h x=x-h(1) 或(2) y=y+k y=y-k公式(1)或(2)叫做平移(或移軸)公式.中心或頂點(diǎn)在(h,k)的圓錐曲線方程見下表.方 程焦 點(diǎn)焦 線對稱軸橢圓+=1(c+h,k)x=+hx=hy=k+ =1(h,c+k)y=+kx=hy=k雙曲線-=1(c+h,k)=+kx=hy=k-=1(h,c+h)y=+kx=hy=k拋物線(y-k)2=2p(x-h)(+h,k)x

7、=-+hy=k(y-k)2=-2p(x-h)(-+h,k)x=+hy=k(x-h)2=2p(y-k)(h, +k)y=-+kx=h(x-h)2=-2p(y-k)(h,- +k)y=+kx=h二、知識點(diǎn)、能力點(diǎn)提示(一)曲線和方程,由已知條件列出曲線的方程,曲線的交點(diǎn)說明 在求曲線方程之前必須建立坐標(biāo)系,然后根據(jù)條件列出等式進(jìn)行化簡 .特別是在求出方程后要考慮化簡的過程是否是同解變形,是否滿足已知條件,只有這樣求 出的曲線方程才能準(zhǔn)確無誤.另外,要求會判斷 曲線間有無交點(diǎn),會求曲線的交點(diǎn)坐標(biāo).三、 考綱中對圓錐曲線的要求:考試內(nèi)容:. 橢圓及其標(biāo)準(zhǔn)方程.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程;. 雙

8、曲線及其標(biāo)準(zhǔn)方程.雙曲線的簡單幾何性質(zhì);. 拋物線及其標(biāo)準(zhǔn)方程.拋物線的簡單幾何性質(zhì);考試要求:. (1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),理解橢圓的參數(shù)方程;. (2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡單幾何性質(zhì);. (3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì);. (4)了解圓錐曲線的初步應(yīng)用。四對考試大綱的理解高考圓錐曲線試題一般有3題(1個選擇題, 1個填空題, 1個解答題), 共計(jì)22分左右, 考查的知識點(diǎn)約為20個左右. 其命題一般緊扣課本, 突出重點(diǎn), 全面考查. 選擇題和填空題考查以圓錐曲線的基本概念和性質(zhì)為主, 難度在中等以下,一般較容易得分,解答題

9、常作為數(shù)學(xué)高考中的壓軸題,綜合考查學(xué)生數(shù)形結(jié)合、等價轉(zhuǎn)換、分類討論、邏輯推理等諸方面的能力,重點(diǎn)考查圓錐曲線中的重要知識點(diǎn), 通過知識的重組與鏈接, 使知識形成網(wǎng)絡(luò), 著重考查直線與圓錐曲線的位置關(guān)系, 往往結(jié)合平面向量進(jìn)行求解,在復(fù)習(xí)應(yīng)充分重視。求圓錐曲線的方程【復(fù)習(xí)要點(diǎn)】求指定的圓錐曲線的方程是高考命題的重點(diǎn),主要考查識圖、畫圖、數(shù)形結(jié)合、等價轉(zhuǎn)化、分類討論、邏輯推理、合理運(yùn)算及創(chuàng)新思維能力,解決好這類問題,除要求熟練掌握好圓錐曲線的定義、性質(zhì)外,命題人還常常將它與對稱問題、弦長問題、最值問題等綜合在一起命制難度較大的題,解決這類問題常用定義法和待定系數(shù)法.一般求已知曲線類型的曲線方程問題

10、,可采用“先定形,后定式,再定量”的步驟.定形指的是二次曲線的焦點(diǎn)位置與對稱軸的位置.定式根據(jù)“形”設(shè)方程的形式,注意曲線系方程的應(yīng)用,如當(dāng)橢圓的焦點(diǎn)不確定在哪個坐標(biāo)軸上時,可設(shè)方程為mx2+ny2=1(m0,n0).定量由題設(shè)中的條件找到“式”中特定系數(shù)的等量關(guān)系,通過解方程得到量的大小.【例題】【例1】 雙曲線=1(bN)的兩個焦點(diǎn)F1、F2,P為雙曲線上一點(diǎn),|OP|5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_.解:設(shè)F1(c,0)、F2(c,0)、P(x,y),則|PF1|2+|PF2|2=2(|PO|2+|F1O|2)2(52+c2),即|PF1|2+|PF2|25

11、0+2c2,又|PF1|2+|PF2|2=(|PF1|PF2|)2+2|PF1|PF2|,依雙曲線定義,有|PF1|PF2|=4,依已知條件有|PF1|PF2|=|F1F2|2=4c216+8c250+2c2,c2,又c2=4+b2,b2,b2=1.【例2】 已知圓C1的方程為,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程。解:由設(shè)橢圓方程為設(shè) 又 兩式相減,得 又即將由得解得 故所有橢圓方程【例3】 過點(diǎn)(1,0)的直線l與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過線段AB的中點(diǎn),

12、同時橢圓C上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線l對稱,試求直線l與橢圓C的方程.解法一:由e=,得,從而a2=2b2,c=b.設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上.則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12x22)+2(y12y22)=0,設(shè)AB中點(diǎn)為(x0,y0),則kAB=,又(x0,y0)在直線y=x上,y0=x0,于是=1,kAB=1,設(shè)l的方程為y=x+1.右焦點(diǎn)(b,0)關(guān)于l的對稱點(diǎn)設(shè)為(x,y),由點(diǎn)(1,1b)在橢圓上,得1+2(1b)2=2b2,b2=.所求橢圓C的方程為 =1,l的方程為y=x+1.解法二:由e

13、=,從而a2=2b2,c=b.設(shè)橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x1),將l的方程代入C的方程,得(1+2k2)x24k2x+2k22b2=0,則x1+x2=,y1+y2=k(x11)+k(x21)=k(x1+x2)2k=.直線l:y=x過AB的中點(diǎn)(),則,解得k=0,或k=1.若k=0,則l的方程為y=0,焦點(diǎn)F(c,0)關(guān)于直線l的對稱點(diǎn)就是F點(diǎn)本身,不能在橢圓C上,所以k=0舍去,從而k=1,直線l的方程為y=(x1),即y=x+1,以下同解法一.解法3:設(shè)橢圓方程為直線不平行于y軸,否則AB中點(diǎn)在x軸上與直線中點(diǎn)矛盾。故可設(shè)直線,則, 所以所求的橢圓方程為:【例

14、4】 如圖,已知P1OP2的面積為,P為線段P1P2的一個三等分點(diǎn),求以直線OP1、OP2為漸近線且過點(diǎn)P的離心率為的雙曲線方程.解:以O(shè)為原點(diǎn),P1OP2的角平分線為x軸建立如圖所示的直角坐標(biāo)系.設(shè)雙曲線方程為=1(a0,b0)由e2=,得.兩漸近線OP1、OP2方程分別為y=x和y=x設(shè)點(diǎn)P1(x1, x1),P2(x2,x2)(x10,x20),則由點(diǎn)P分所成的比=2,得P點(diǎn)坐標(biāo)為(),又點(diǎn)P在雙曲線=1上,所以=1,即(x1+2x2)2(x12x2)2=9a2,整理得8x1x2=9a2 即x1x2= 由、得a2=4,b2=9故雙曲線方程為=1.【例5】 過橢圓C:上一動點(diǎn)P引圓O:x2

15、 +y2 =b2的兩條切線PA、PB,A、B為切點(diǎn),直線AB與x軸,y軸分別交于M、N兩點(diǎn)。(1) 已知P點(diǎn)坐標(biāo)為(x0,y0 )并且x0y00,試求直線AB方程;(2) 若橢圓的短軸長為8,并且,求橢圓C的方程;(3) 橢圓C上是否存在點(diǎn)P,由P向圓O所引兩條切線互相垂直?若存在,請求出存在的條件;若不存在,請說明理由。解:(1)設(shè)A(x1,y1),B(x2, y2)切線PA:,PB:P點(diǎn)在切線PA、PB上,直線AB的方程為(2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,) 2b=8 b=4 代入得a2 =25, b2 =16橢圓C方程: (注:不剔除xy0,可不扣分)(

16、3) 假設(shè)存在點(diǎn)P(x0,y0)滿足PAPB,連接OA、OB由|PA|=|PB|知,四邊形PAOB為正方形,|OP|=|OA| 又P點(diǎn)在橢圓C上 由知xab0 a2 b20(1)當(dāng)a22b20,即ab時,橢圓C上存在點(diǎn),由P點(diǎn)向圓所引兩切線互相垂直;(2)當(dāng)a22b20,即ba0設(shè)x1,x2為方程*的兩根,則 故AB中點(diǎn)M的坐標(biāo)為(,)線段AB的垂直平分線方程為:將D(0,1)坐標(biāo)代入,化簡得:4m=3k21故m、k滿足,消去k2得:m24m0解得:m4又4m=3k211 m故m.【直線與圓錐曲線練習(xí)】一、選擇題1斜率為1的直線l與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為( )A.

17、2B. C.D. 2拋物線y=ax2與直線y=kx+b(k0)交于A、B兩點(diǎn),且此兩點(diǎn)的橫坐標(biāo)分別為x1,x2,直線與x軸交點(diǎn)的橫坐標(biāo)是x3,則恒有( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=0二、填空題3已知兩點(diǎn)M(1,)、N(4,),給出下列曲線方程:4x+2y1=0,x2+y2=3,+y2=1,y2=1,在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是_.4正方形ABCD的邊AB在直線y=x+4上,C、D兩點(diǎn)在拋物線y2=x上,則正方形ABCD的面積為_.5在拋物線y2=16x內(nèi),通過點(diǎn)(2,1)且在此點(diǎn)被平分

18、的弦所在直線的方程是_.三、解答題6已知拋物線y2=2px(p0),過動點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,且|AB|2p.(1)求a的取值范圍.(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求NAB面積的最大值.7已知中心在原點(diǎn),頂點(diǎn)A1、A2在x軸上,離心率e=的雙曲線過點(diǎn)P(6,6).(1)求雙曲線方程.(2)動直線l經(jīng)過A1PA2的重心G,與雙曲線交于不同的兩點(diǎn)M、N,問:是否存在直線l,使G平分線段MN,證明你的結(jié)論.8已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線的一個頂點(diǎn)A1與A點(diǎn)關(guān)于直線y=x對稱.(1)求雙曲線C的

19、方程.(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0k1時,雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為,試求k的值及此時B點(diǎn)的坐標(biāo).直線與圓錐曲線參考答案一、1.解析:弦長|AB|=.答案:C2.解析:解方程組,得ax2kxb=0,可知x1+x2=,x1x2=,x3=,代入驗(yàn)證即可.答案:B二、3.解析:點(diǎn)P在線段MN的垂直平分線上,判斷MN的垂直平分線于所給曲線是否存在交點(diǎn).答案:4.解析:設(shè)C、D所在直線方程為y=x+b,代入y2=x,利用弦長公式可求出|CD|的長,利用|CD|的長等于兩平行直線y=x+4與y=x+b間的距離,求出b的值,再代入求出|CD|的長.答案:18或505.解析:設(shè)所求直線與y2=16x相交于點(diǎn)A、B,且A(x1,y1),B(x2,y2),代入拋物線方程得y12=16x1,y22=16x2,兩式相減得,(y1+y2)(y1y2)=16(x1x2).即kAB=8.故所求直線方程為y=8x15.答案:8xy15=0三、6.解:(1)設(shè)直線l的方程為:y=xa,代入拋物線方程得(xa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論