




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2013考研數(shù)學一大綱變化對比表高等數(shù)學部分章節(jié)2012大綱2013大綱變化情況及復習策略一、 函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運算,極限存在的兩個準則:單調(diào)有界準則和夾逼準則,兩個重要極限:,函數(shù)連續(xù)的概念,函數(shù)間斷點的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)??荚囈? 理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題
2、的函數(shù)關系。2 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。3 理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限的關系。6 掌握極限的性質(zhì)及四則運算法則。7 掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。8 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。9 理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會判別函數(shù)間斷點的類型。10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性
3、質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì)??荚噧?nèi)容函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運算,極限存在的兩個準則:單調(diào)有界準則和夾逼準則,兩個重要極限:,函數(shù)連續(xù)的概念,函數(shù)間斷點的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)??荚囈?0 理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系。11 了解函數(shù)的有界性、單調(diào)性、周期
4、性和奇偶性。12 理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。13 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。14 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限的關系。15 掌握極限的性質(zhì)及四則運算法則。16 掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。17 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。18 理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會判別函數(shù)間斷點的類型。10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、
5、介值定理),并會應用這些性質(zhì)。無變化,照常復習,注意連續(xù)性在求極限中的應用,閉區(qū)間上連續(xù)函數(shù)性質(zhì)的應用。二、一元函數(shù)微分學考試內(nèi)容導數(shù)和微分的概念,導數(shù)的幾何意義和物理意義,函數(shù)的可導性與連續(xù)性之間的關系,平面曲線的切線與法線,導數(shù)和微分的四則運算,基本初等函數(shù)的導數(shù),復合函數(shù)、反函數(shù)和隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導數(shù),一階微分形式的不變性,微分中值定理,洛必達(LHospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值,弧微分,曲率的概念,曲率圓與曲率半徑考試要求1 理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,
6、理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系。2 掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)等函數(shù)的導數(shù)公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。3 了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù)。4 會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)。5 理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理。6 掌握用洛必達法則求未定式極限的方法。7 理解函數(shù)的極
7、值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用。8 會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設函數(shù)f(x)具有二階導數(shù),當時,f(x)的圖形是凹的;當時,f(x)的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。9 了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑??荚噧?nèi)容導數(shù)和微分的概念,導數(shù)的幾何意義和物理意義,函數(shù)的可導性與連續(xù)性之間的關系,平面曲線的切線與法線,導數(shù)和微分的四則運算,基本初等函數(shù)的導數(shù),復合函數(shù)、反函數(shù)和隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導數(shù),一階微分形式的不變性,微分
8、中值定理,洛必達(LHospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值,弧微分,曲率的概念,曲率圓與曲率半徑考試要求1 理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系。2 掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)等函數(shù)的導數(shù)公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。3 了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù)。4 會求分段函數(shù)的導數(shù),會求隱函數(shù)和由
9、參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)。5 理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理。6 掌握用洛必達法則求未定式極限的方法。7 理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用。8 會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設函數(shù)f(x)具有二階導數(shù),當時,f(x)的圖形是凹的;當時,f(x)的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。9. 了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑。無變
10、化,照常復習,注意導數(shù)的基本概念及微分中值定理。三、一元函數(shù)積分學考試內(nèi)容原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導數(shù),牛頓萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分,反常(廣義)積分,定積分的應用考試要求1 理解原函數(shù)的概念,理解不定積分與定積分的概念。2 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。3 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。4 理解積分上限的函數(shù)
11、,會求它的導數(shù),掌握牛頓萊布尼茨公式。5 了解反常積分的概念,會計算反常積分。6 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平等截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值??荚噧?nèi)容原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導數(shù),牛頓萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分,反常(廣義)積分,定積分的應用考試要求1 理解原函數(shù)的概念,理解不定積分與定
12、積分的概念。2 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。3 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。4 理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓萊布尼茨公式。5 了解反常積分的概念,會計算反常積分。6. 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平等截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值。無變化,照常復習,注意變限積分在求極限中的應用。四、向量代數(shù)和空間解析幾何考試內(nèi)容向量的概念,向量的線性運算,向量的數(shù)量積和向量積,向量的混合積,兩向量垂直
13、、平行的條件,兩向量的夾角,向量的坐標表達式及其運算,單位向量,方向數(shù)與方向余弦,曲面方程和空間曲線方程的概念,平面方程、直線方程,平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件,點到平面和點到直線的距離,球面方程和一般方程,空間曲線在坐標面上的投影曲線方程考試要求1 理解空間直角坐標系,理解向量的概念及其表示。2 掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件。3 理解單位向量、方向數(shù)與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法。4 掌握平面方程和直線方程及其求法。5 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利
14、用平面、直線的相互關系(平行、垂直、相交等)解決有關問題。6 會求點到直線以及點到平面的距離。7 了解曲面方程和空間曲線方程的概念。8 了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉(zhuǎn)曲面的方程。9 了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程。考試內(nèi)容向量的概念,向量的線性運算,向量的數(shù)量積和向量積,向量的混合積,兩向量垂直、平行的條件,兩向量的夾角,向量的坐標表達式及其運算,單位向量,方向數(shù)與方向余弦,曲面方程和空間曲線方程的概念,平面方程、直線方程,平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件,點到平面和點到直線的距離,球面
15、方程和一般方程,空間曲線在坐標面上的投影曲線方程考試要求1 理解空間直角坐標系,理解向量的概念及其表示。2 掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件。3 理解單位向量、方向數(shù)與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法。4 掌握平面方程和直線方程及其求法。5 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等)解決有關問題。6 會求點到直線以及點到平面的距離。7 了解曲面方程和空間曲線方程的概念。8 了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉(zhuǎn)曲面的方程。9. 了解空間曲線的參數(shù)
16、方程和一般方程。了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程。無變化,照常復習,這部分獨立考查的概率較小。五、多元函數(shù)微分學考試內(nèi)容多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導數(shù)和全微分,全微分存在的必要條件和充分條件,多元復合函數(shù)、隱函數(shù)的求導法,二階偏導數(shù),方向?qū)?shù)和梯度,空間曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)的二階泰勒公式,多元函數(shù)的極值和條件極值,多元函數(shù)的最大值、最小值及其簡單應用。考試要求1 理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。2 了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上二元連續(xù)
17、函數(shù)的性質(zhì)。3 理解多元函數(shù)偏導數(shù)與全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。4 理解方向?qū)?shù)與梯度的概念,并掌握其計算方法。5 掌握多元復合函數(shù)一階、二階偏導數(shù)的求法。6 了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù)。7 了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。8 了解二元函數(shù)的二階泰勒公式。9 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決簡單的應用問題。考試內(nèi)容多元函數(shù)的概念
18、,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導數(shù)和全微分,全微分存在的必要條件和充分條件,多元復合函數(shù)、隱函數(shù)的求導法,二階偏導數(shù),方向?qū)?shù)和梯度,空間曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)的二階泰勒公式,多元函數(shù)的極值和條件極值,多元函數(shù)的最大值、最小值及其簡單應用??荚囈? 理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。2 了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。3 理解多元函數(shù)偏導數(shù)與全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。4 理解方向?qū)?shù)與梯度的概念,并掌
19、握其計算方法。5 掌握多元復合函數(shù)一階、二階偏導數(shù)的求法。6 了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù)。7 了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。8 了解二元函數(shù)的二階泰勒公式。9. 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決簡單的應用問題。無變化,照常復習,注意偏導數(shù)與極值的計算。六、多元函數(shù)積分學考試內(nèi)容二重積分與三重積分的概念、性質(zhì)、計算和應用,兩類曲線積分的概念、性質(zhì)及計算,兩類曲線積分的關系,格林(Gre
20、en)公式,平面曲線積分與路徑無關的條件,二元函數(shù)全微分的原函數(shù),兩類曲面積分的概念、性質(zhì)及計算,兩類曲面積分的關系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及計算,曲線積分和曲面積分的應用考試要求1 理解二重積分三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理。2 掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標)。3 理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關系。4 掌握計算兩類曲線積分的方法。5 掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數(shù)全微分的原函數(shù)。6 了解兩類曲面
21、積分的概念、性質(zhì)及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分。7 了解散度與旋度的概念,并會計算。8 會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、形心、轉(zhuǎn)動慣量、引力、功及流量等)。考試內(nèi)容二重積分與三重積分的概念、性質(zhì)、計算和應用,兩類曲線積分的概念、性質(zhì)及計算,兩類曲線積分的關系,格林(Green)公式,平面曲線積分與路徑無關的條件,二元函數(shù)全微分的原函數(shù),兩類曲面積分的概念、性質(zhì)及計算,兩類曲面積分的關系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散
22、度、旋度的概念及計算,曲線積分和曲面積分的應用考試要求1 理解二重積分三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理。2 掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標)。3 理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關系。4 掌握計算兩類曲線積分的方法。5 掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數(shù)全微分的原函數(shù)。6 了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分。7 了解散度與旋度的概念,并會計算。8.
23、會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、形心、轉(zhuǎn)動慣量、引力、功及流量等)。無變化,照常復習,注意重積分的計算與兩類曲線積分、曲面積分的計算方法。七、無窮級數(shù)考試內(nèi)容常數(shù)項級數(shù)的收斂與發(fā)散的概念,收斂級數(shù)的和的概念,級數(shù)的基本性質(zhì)與收斂的必要條件,幾何級數(shù)與P級數(shù)及其收斂性,正項級數(shù)收斂性的判別法,交錯級數(shù)與萊布尼茨定理,任意項級數(shù)的絕對收斂與條件收斂,函數(shù)項級數(shù)的收斂域與和函數(shù)的概念,冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域,冪級數(shù)的和函數(shù),冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡單冪級數(shù)和函數(shù)的求法,初等函數(shù)的冪級數(shù)展開式,函
24、數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù),狄利克雷(Dirichlet)定理,函數(shù)在-l,l上的傅里葉級數(shù),函數(shù)在0,l上的正弦級數(shù)和余弦級數(shù)考試要求1 理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。2 掌握幾何級數(shù)與P級數(shù)的收斂與發(fā)散的條件。3 掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。4 掌握交錯級數(shù)的萊布尼茨判別法。5 了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系。6 了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。7 理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。8 了解冪級數(shù)在其收斂區(qū)間內(nèi)
25、的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項求導和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。9 了解函數(shù)展開為泰勒級數(shù)的充分必要條件。10 掌握,與的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為冪級數(shù)。11 了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在-l,l上的函數(shù)展開為傅里葉級數(shù),會將定義在0,l上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和的表達式??荚噧?nèi)容常數(shù)項級數(shù)的收斂與發(fā)散的概念,收斂級數(shù)的和的概念,級數(shù)的基本性質(zhì)與收斂的必要條件,幾何級數(shù)與P級數(shù)及其收斂性,正項級數(shù)收斂性的判別法,交錯級數(shù)與萊布尼茨定理,任意項級數(shù)的
26、絕對收斂與條件收斂,函數(shù)項級數(shù)的收斂域與和函數(shù)的概念,冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域,冪級數(shù)的和函數(shù),冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡單冪級數(shù)和函數(shù)的求法,初等函數(shù)的冪級數(shù)展開式,函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù),狄利克雷(Dirichlet)定理,函數(shù)在-l,l上的傅里葉級數(shù),函數(shù)在0,l上的正弦級數(shù)和余弦級數(shù)考試要求1 理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。2 掌握幾何級數(shù)與P級數(shù)的收斂與發(fā)散的條件。3 掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。4 掌握交錯級數(shù)的萊布尼茨判別法。5 了解任意項
27、級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系。6 了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。7 理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。8 了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項求導和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。9 了解函數(shù)展開為泰勒級數(shù)的充分必要條件。10 掌握,與的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為冪級數(shù)。11. 了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在-l,l上的函數(shù)展開為傅里葉級數(shù),會將定義在0,l上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫
28、出傅里葉級數(shù)的和的表達式。無變化,照常復習,注意常數(shù)項級數(shù)收斂性的判斷及冪級數(shù)收斂半徑的求法。八、常微分方程考試內(nèi)容常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,伯努利(Bernoulli)方程,全微分方程,可用簡單的變量代換求解的某些微分方程,可降階的高階微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程,高于二階的某些常系數(shù)齊次線性微分方程,簡單的二階常系數(shù)非齊次線性微分方程,歐拉(Euler)方程,微分方程的簡單應用考試要求1 了解微分方程及其階、解、通解、初始條件和特解等概念。2 掌握變量可分離的微分方程及一階線性微分方程的求解方法。
29、3 會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程。4 會用降階法解下列形式的微分方程: 和。5 理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。6 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。7 會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程。8 會解歐拉方程。9. 會用微分方程解決一些簡單的應用問題??荚噧?nèi)容常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,伯努利(Bernoulli)方程,全微分方程,可用簡單的變量代換求解的某些微分方程,可降階的高階微分方程
30、,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程,高于二階的某些常系數(shù)齊次線性微分方程,簡單的二階常系數(shù)非齊次線性微分方程,歐拉(Euler)方程,微分方程的簡單應用考試要求1 了解微分方程及其階、解、通解、初始條件和特解等概念。2 掌握變量可分離的微分方程及一階線性微分方程的求解方法。3 會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程。4 會用降階法解下列形式的微分方程: 和。5 理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。6 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。7 會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、
31、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程。8 會解歐拉方程。9. 會用微分方程解決一些簡單的應用問題。無變化,照常復習,注意線性常系數(shù)微分方程的求解方法。線性代數(shù)部分章節(jié)2012大綱2013大綱變化情況及復習策略一、 行列式考試內(nèi)容行列式的概念和基本性質(zhì),行列式按行(列)展開定理考試要求1 了解行列式的概念,掌握行列式的性質(zhì)。2 會應用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式??荚噧?nèi)容行列式的概念和基本性質(zhì),行列式按行(列)展開定理考試要求1 了解行列式的概念,掌握行列式的性質(zhì)。2. 會應用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式。無變化,照常復習二、 矩陣考試內(nèi)
32、容矩陣的概念,矩陣的線性運算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價,分塊矩陣及其運算考試要求1 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì)。2 掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4 理解矩陣的初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用
33、初等變換求矩陣的秩和逆矩陣的方法。5 了解分塊矩陣及其運算??荚噧?nèi)容矩陣的概念,矩陣的線性運算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價,分塊矩陣及其運算考試要求1 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì)。2 掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4 理解矩陣的初等變換的概
34、念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。5. 了解分塊矩陣及其運算。無變化,照常復習,注意矩陣的秩是矩陣的本質(zhì)。三、 向量考試內(nèi)容向量的概念,向量的線性組合與線性表示,向量組的線性相關與線性無關,向量組的極大線性無關組,等價向量組,向量組的秩,向量組的秩與矩陣的秩之間的關系,向量空間及其相關概念,n維向量空間的基變換和坐標變換,過渡矩陣,向量的內(nèi)積,線性無關向量組的正交規(guī)范化方法,規(guī)范正交基,正交矩陣及其性質(zhì)考試要求1 理解n維向量、向量的線性組合與線性表示的概念。2 理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的
35、有關性質(zhì)及判別法。3 理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩。4 理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系。5 了解n維向量空間、子空間、基底、維數(shù)、坐標等概念。6 了解基變換和坐標變換公式,會求過渡矩陣。7 了解內(nèi)積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法。8 了解規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì)??荚噧?nèi)容向量的概念,向量的線性組合與線性表示,向量組的線性相關與線性無關,向量組的極大線性無關組,等價向量組,向量組的秩,向量組的秩與矩陣的秩之間的關系,向量空間及其相關概念,n維向量空間的基變換和坐
36、標變換,過渡矩陣,向量的內(nèi)積,線性無關向量組的正交規(guī)范化方法,規(guī)范正交基,正交矩陣及其性質(zhì)考試要求1 理解n維向量、向量的線性組合與線性表示的概念。2 理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質(zhì)及判別法。3 理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩。4 理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系。5 了解n維向量空間、子空間、基底、維數(shù)、坐標等概念。6 了解基變換和坐標變換公式,會求過渡矩陣。7 了解內(nèi)積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法。8. 了解規(guī)范正交基、正交矩陣的
37、概念以及它們的性質(zhì)。無變化,照常復習,注意向量組的極大無關組是其核心。四、 線性方程組考試內(nèi)容線性方程組的克萊姆(Crammer)法則,齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件,線性方程組解的性質(zhì)和解的結(jié)構(gòu),齊次線性方程組的基礎解系和通解,解空間,非齊次線性方程組的通解考試要求1 會用克萊姆法則。2 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。3 理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法。4 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5 掌握用初等行變換求解線性方程組的方法。考試
38、內(nèi)容線性方程組的克拉默(Crammer)法則,齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件,線性方程組解的性質(zhì)和解的結(jié)構(gòu),齊次線性方程組的基礎解系和通解,解空間,非齊次線性方程組的通解考試要求1 會用克拉默法則。2 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。3 理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法。4 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5. 掌握用初等行變換求解線性方程組的方法。無變化,照常復習,注意線性方程組的解的結(jié)構(gòu)。五、 矩陣的特征值和特征向量考試內(nèi)容矩陣的特征值
39、和特征向量的概念、性質(zhì),相似變換、相似矩陣的概念及性質(zhì),矩陣可相似對角化的充分必要條件及相似對角矩陣,實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1 理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量。2 理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。3 掌握實對稱矩陣的特征值和特征向量的性質(zhì)。考試內(nèi)容矩陣的特征值和特征向量的概念、性質(zhì),相似變換、相似矩陣的概念及性質(zhì),矩陣可相似對角化的充分必要條件及相似對角矩陣,實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1 理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值
40、和特征向量。2 理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。3. 掌握實對稱矩陣的特征值和特征向量的性質(zhì)。無變化,照常復習,注意特征值與特征向量的求取及其反問題。六、 二次型考試內(nèi)容二次型及其矩陣表示,合同變換與合同矩陣,二次型的秩,慣性定理,二次型的標準形和規(guī)范形,用正交變換和配方法化二次型為標準形,二次型及其矩陣的正定性考試要求1 掌握二次型及其矩陣表示,了解二次型的概念,了解合同變換和合同矩陣的概念,了解二次型的標準型、規(guī)范形的概念以及慣性定理。2 掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形。3 理解正定二次型、正定矩
41、陣的概念,并掌握其判別法??荚噧?nèi)容二次型及其矩陣表示,合同變換與合同矩陣,二次型的秩,慣性定理,二次型的標準形和規(guī)范形,用正交變換和配方法化二次型為標準形,二次型及其矩陣的正定性考試要求1 掌握二次型及其矩陣表示,了解二次型的概念,了解合同變換和合同矩陣的概念,了解二次型的標準型、規(guī)范形的概念以及慣性定理。2 掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形。3. 理解正定二次型、正定矩陣的概念,并掌握其判別法。無變化,照常復習,注意二次型化標準形的方法。概率統(tǒng)計部分章節(jié)2012大綱2013大綱變化情況及復習策略一、 隨機事件和概率考試內(nèi)容隨機事件與樣本空間,事件的關系與運算,
42、完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨立性,獨立重復試驗考試要求1 了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。2 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式。3 理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法??荚噧?nèi)容隨機事件與樣本空間,事件的關系與運算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率
43、的基本公式,事件的獨立性,獨立重復試驗考試要求4 了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。5 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式。6 理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。無變化,照常復習,重點關注全概率公式、貝葉斯公式及獨立性公式等。二、 隨機變量及其分布考試內(nèi)容隨機變量,隨機變量分布函數(shù)的概念及其性質(zhì),離散型隨機變量的概率分布,連續(xù)型隨機變量的概率密度,常見隨機變量的
44、分布,隨機變量函數(shù)的分布考試要求1 理解隨機變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機變量相聯(lián)系的事件的概率。2 理解離散型隨機變量及其概率分布的概念,掌握01分布、二項分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布及其應用。3 掌握泊松定理的結(jié)論和應用條件,會用泊松分布近似表示二項分布。4 理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為()的指數(shù)分布的概率密度為5 會求隨機變量函數(shù)的分布??荚噧?nèi)容隨機變量,隨機變量分布函數(shù)的概念及其性質(zhì),離散型隨機變量的概率分布,連續(xù)型隨機變量的概率密度,常見隨機變量的分布,
45、隨機變量函數(shù)的分布考試要求1 理解隨機變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機變量相聯(lián)系的事件的概率。2 理解離散型隨機變量及其概率分布的概念,掌握01分布、二項分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布及其應用。3 掌握泊松定理的結(jié)論和應用條件,會用泊松分布近似表示二項分布。4 理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為()的指數(shù)分布的概率密度為5 會求隨機變量函數(shù)的分布。無變化,照常復習,重點關注分布函數(shù)與密度函數(shù)及常用分布參數(shù)的意義。三、 多維隨機變量的分布考試內(nèi)容多維隨機變量及其分布函數(shù),二維
46、離散型隨機變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度,隨機變量的獨立性和不相關性,常見二維隨機變量的分布,兩個及兩個以上隨機變量簡單函數(shù)的分布考試要求1 理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質(zhì),理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關事件的概率。2 理解隨機變量的獨立性及不相關性的概念,掌握隨機變量相互獨立的條件。3 掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義。4 會求兩個隨機變量簡單函數(shù)的分布,會求多個相互獨立隨
47、機變量簡單函數(shù)的分布??荚噧?nèi)容多維隨機變量及其分布函數(shù),二維離散型隨機變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度,隨機變量的獨立性和不相關性,常見二維隨機變量的分布,兩個及兩個以上隨機變量簡單函數(shù)的分布考試要求1 理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質(zhì),理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關事件的概率。2 理解隨機變量的獨立性及不相關性的概念,掌握隨機變量相互獨立的條件。3 掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率
48、意義。4 會求兩個隨機變量簡單函數(shù)的分布,會求多個相互獨立隨機變量簡單函數(shù)的分布。無變化,照常復習,多維隨機變量求密度函數(shù)的方法,二維正態(tài)分布的性質(zhì)。四、 隨機變量的數(shù)字特征考試內(nèi)容隨機變量的數(shù)學期望(均值)、方差、標準差及其性質(zhì),隨機變量函數(shù)的數(shù)學期望,矩、協(xié)方差、相關系數(shù)及其性質(zhì)考試要求1 理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。2 會求隨機變量函數(shù)的數(shù)學期望。考試內(nèi)容隨機變量的數(shù)學期望(均值)、方差、標準差及其性質(zhì),隨機變量函數(shù)的數(shù)學期望,矩、協(xié)方差、相關系數(shù)及其性質(zhì)考試要求1 理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。2 會求隨機變量函數(shù)的數(shù)學期望。無變化,照常復習,隨機變量的數(shù)字特征是考試的重點之一。五、 大數(shù)定律和中心極限定理考試內(nèi)容切比雪夫(Chebyshew)不等式,切比雪夫大數(shù)定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 質(zhì)量異常處理流程培訓
- 《奇趣生物》課件
- 邊境承包魚塘合同協(xié)議
- 車位營銷策劃合同協(xié)議
- 輕質(zhì)防爆墻銷售合同協(xié)議
- 車位租賃合同安全協(xié)議
- 協(xié)議書樓盤認籌協(xié)議書
- 速貸超期合同解除協(xié)議
- 產(chǎn)品研發(fā)戰(zhàn)略合作協(xié)議說明與說明
- 專業(yè)藝術品展覽館銷售合同
- 國土空間規(guī)劃與自然資源“一張圖”構(gòu)建的理論方法和實踐
- 全國青少年電子信息智能創(chuàng)新大賽圖形化編程(必做題模擬三卷)
- 2022秋“1530”安全教育記錄
- 2023學年度六年級語文下冊期末復習(根據(jù)課文內(nèi)容填空)
- 2023學年完整公開課版虎皮鸚鵡
- 共產(chǎn)主義原理
- 內(nèi)科培訓計劃
- GRR分析表格模板
- 撫順東科精細化工有限公司 15萬噸-年減水劑單體、3萬噸-年表面活性劑系列產(chǎn)品及16萬噸-年碳酸酯 系列產(chǎn)品建設項環(huán)境影響報告
- 產(chǎn)品需求文檔(PRD)模板
- 2022新教科版科學五下全冊教案、全冊教學反思(表格式)
評論
0/150
提交評論