人教版八年級數(shù)學(xué)上三角形全等的判定(ASA、AAS)_第1頁
人教版八年級數(shù)學(xué)上三角形全等的判定(ASA、AAS)_第2頁
人教版八年級數(shù)學(xué)上三角形全等的判定(ASA、AAS)_第3頁
人教版八年級數(shù)學(xué)上三角形全等的判定(ASA、AAS)_第4頁
人教版八年級數(shù)學(xué)上三角形全等的判定(ASA、AAS)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、三角形全等的判定,ASA,AAS,1.什么樣的圖形是全等三角形? 2.判斷三角形全等至少要有幾個條件?,答:至少要有三個條件,邊邊邊公理:(SSS) 有三邊對應(yīng)相等的兩個三角形全等。,邊角邊公理:(SAS) 有兩邊和它們夾角對應(yīng)相等的兩個三角形全等。,想一想 說一說:,如果已知一個三角形的兩角及一邊,那么有幾種可能的情況呢?,答:角邊角(ASA) 角角邊(AAS),想一想 說一說:,先任意畫出一個ABC,再畫一個A/B/C/,使A/B/=AB, A/ =A, B/ =B (即使兩角和它們的夾邊對應(yīng)相等)。把畫好的A/B/C/剪下,放到ABC上,它們?nèi)葐幔?做一做:,畫法:1、畫A/B/AB;

2、,2、在 A/B/的同旁畫DA/ B/ =A , EB/A/ =B, A/ D,B/E交于點C/。,通過實驗?zāi)惆l(fā)現(xiàn)了什么規(guī)律?,C,已知:任意 ABC,畫一個 A/B/C/, 使A/B/AB, A/ =A, B/ =B :,A/B/C/就是所要畫的三角形。,用數(shù)學(xué)符號表示:,兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 (可以簡寫成“角邊角”或“ASA”)。,探究反映的規(guī)律是:,如圖,應(yīng)填什么就有 AOC BOD: A=B,(已知) (已知) , 1=2(對頂角相等) AOCBOD (ASA),AO=BO,1,2,練一練:,例1.已知:點D在AB上,點E在AC上,BE和CD相交于點O,AB=AC,

3、B=C。 求證:(1)AD=AE; (2)BD=CE。,證明 :在ADC和AEB中,A=A(公共角) AC=AB(已知) C=B(已知),ACDABE(ASA) AD=AE(全等三角形的對應(yīng)邊相等) 又AB=AC(已知) BD=CE,幫幫我,小明踢球時不慎把一塊三角形玻璃打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊于原來一樣的三角形玻璃呢? 如果可以,帶哪塊去合適呢?為什么?,(2),(1),C,B,E,A,D,利用“角邊角”可知,帶第(2)塊去, 可以配到一個與原來全等的三角形玻璃。,(2),如下圖,在ABC和DEF中,A D, BE, BCEF, ABC與DEF全等嗎?能利

4、用角邊角條件證明你的結(jié)論嗎?,在ABC和DEF中, A +B +C1800, D +E +F =1800, A D, BE, CF, BE, BCEF, CF, ABC DEF (ASA),試一試:,用數(shù)學(xué)符號表示:,兩個角和其中一個角的對邊對應(yīng)相等的兩個三角形全等(可以簡寫成“角角邊”或“AAS”)。,探究反映的規(guī)律是:,到目前為止,我們一共探索出判定三角形全等的四種規(guī)律,它們分別是:,1、邊邊邊 (SSS),3、角邊角 (ASA),4、角角邊 (AAS),2、邊角邊 (SAS),說一說:,1、如圖ACB=DFE,BC=EF,根據(jù)SAS,ASA或AAS, 那么應(yīng)補充一個直接條件 -, (寫出

5、一個即可),才能使ABCDEF.,2、如圖,BE=CD,1=2,則AB=AC嗎?為什么?,AC=DF或B=E或A=D,練一練:,例: 如圖,O是AB的中點,C= D, AOC與BOD全等嗎?為什么?,兩角和對邊對應(yīng)相等,(已知),(中點的定義),(對頂角相等),解:在 中,C= D,(AAS),例: 如圖,O是AB的中點,C= D, AOC與BOD全等嗎?為什么?,兩角和對邊對應(yīng)相等,(已知),(中點的定義),(對頂角相等),解:在 中,C= D,(AAS),知識應(yīng)用,1. 如圖,要測量河兩岸相對的兩點A,B的距離,可以在AB的垂線BF上取兩點C,D,使BC=CD,再定出BF的垂線DE,使A,

6、 C,E在一條直線上, 這時測得DE的長就是AB的長。為什么?,在ABC和EDC中, B=EDC=900 BCDC, 12, ABC DEF (ASA) ABED.,1,2,證明:,2.如圖,ABBC, ADDC, 1=2. 求證: AB=AD.,知識應(yīng)用,在ABC和ADC中, B=D, 12, ACAC, ABC ADC (AAS) ABAD.,證明: ABBC, ADDC, B=D=900,練習(xí):,已知: 如圖B=DEF, BC=EF, 求證:ABC DEF (1)若要以“SAS”為依據(jù),還缺條件 ; (2)若要以“ASA”為依據(jù),還缺條件; (3)若要以“SSS” 為依據(jù),還缺條件;,ACB= DEF,AB=DE,AB=DE、AC=DF,(4)若要以“AAS” 為依據(jù),還缺條件;,A= D,小結(jié),(1) 兩角和它們的夾邊對應(yīng)相等的兩個三角形全等.,簡寫成“角邊角”或“ASA”.,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論