


全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ComplexityAnalysisofsleepEEGsignalLiLingWangRuiping*dept.ofbiomedicalengineeringBeijingJiaotongUniversityBeijing,AbstractThecomplexityoftheEEGtimeseriesduringsleepingisinvestigated.TherelationshipsbetweenthesesleepstatesandthecomplexitiesoftheEEGareassessed.LempelZivcomplexityisusedasanovelindexforquantifyingthecomplexityoftheEEGtimeseriesduringdifferentsleepstates.ExperimentalresultsshowthattheLempelZiv(LZ)complexityoftheEEGtimeseriesduringactive(REM,rapideyemovement)sleeptendstobehigherthanduringquiet(NREM,nonrapideyemovement)sleep,andthecomplexityduringwakeishigherthanduringsleep.TheLempelZivcomplexitycaneffectivelydistinguishthesleepstatesofthebrain.Keywords-sleepEEG;sleepstates;LempelZivcomplexity(LZ)I.INTRODUCTIONTheelectroencephalogram(EEG)signalsreflecttheelectricalactivityofthebrain.Sleepstudieshavegrowntoencompassabroadrangeoftechnologiesemployedtostudyanddiagnoseavarietyofsleepdisorders.Thestudyofthebrainelectricalactivity,throughtheelectroencephalographicrecords,isoneofthemostimportanttoolsforthestudyofsleep.Duringsleep,advancedcentralandaseriesofplantsystemchange.In1968,theinstituteofthehumanbrainintheUniversityofCaliforniareleasedthedefinitionofsleepandtechnicalstandards.AccordingtothedifferentformsandfeaturesofEEG,EMGandEOG,sleepisdividedintowakeperiod(W),rapideyemovement(REM),nonrapideyemovement(NREM),including(S1,S2,S3andS4period)6.FollowingthenonlinearcharacteristicofsleepEEG,researchershavewitnessedagrowinguseofvariousnonlinearapproachesinfeatureextractionofEEGsignalsintherecentyears,suchasLyapunovexponents,complexity,spectrumentropyetc.Allthesemethodshavetheirrespectivemeritsanddemerits.TheEEGdataofdifferentsleepingstagesareusedtocalculatethecorrespondingcharacteristicparameters.Inthestudy,thesectiongivesthebriefintroductionsofcomplexity,thedataweuseandhowtoanalyzethedata.Thesectiongivesthecalculatedresultsanddiscussions.Finally,thesectionpresentssomeremarksbasedonthestudy1.II.METHODA.ComplexityLempleandZivdefinedthatalimitedlongseriesofcomplexityshouldbethespeedofnewpatternalongwiththesequenceslengthincreased2.Inrecentyears,LZcomplexityhasbeenappliedextensivelyinbiomedicalsignalsanalysisasametrictoestimatethecomplexityofdiscrete-timephysiologicsignals10.LZcomplexityhasalsobeenusedtostudybrainfunction,braininformationtransmission,EEGcomplexityinpatientswithdiseases,andsleepEEGsignals.ThecomplexityofEEGsequenceperformsrandomdegreeoftheEEGsequenceandreflectsthesizeoftheinformation2.LZcomplexityanalysisisbasedonacoarse-grainingofthemeasurements.Inthecontextofbiomedicalsignalanalysis,typicallythediscrete-timebiomedicalsignalisconvertedintoabinarysequence.Incomparisionwiththethreshold,thesignaldataareconvertedintoa0-1sequencePasfollows:()()()1,2,.,(1),SsssrQsr=+(1)Where()()0,1,dxiTsiotherwise=(2)Usuallythemedianisusedasthethresholdbecauseofitsrobustnesstooutliers.Previousstudieshaveshownthat0-1conversionisadequatetoestimatetheLZcomplexityinbiomedicalsignals.InordertocomputeLZcomplexity,thesequencePisscannedformlefttorightandthecomplexitycounterisincreasedbyoneuniteverytimeanewsubsequenceofconsecutivecharactersisencountered.Thecomplexitymeasurecanbeestimatedusingthefollowingalgorithm.1)LetSandQdenotetwosubsequencesofPandSQbetheconcatenationofSandQ,whilesequenceSQvisderivedfromSQafteritslastcharacterisdeleted(vdenotesthe978-1-4244-4713-8/10/$25.002010Crownoperationofdeletingthelastcharacterinthesequence).Let()2sdenotethevocabularyofalldifferentsubsequencesofSQv.Atthebeginning,()cn=1,S=()1s,Q=()2s,therefore,SQv=()1s.2)Ingeneral,()()()1,2,.,(1),SsssrQsr=+then()()()1,2,.,;SQvsssr=ifQbelongsto()vSQv,thenQisasequenceofSQv,notanewsequence.3)RenewQtobe()1sr+,()2sr+andjudgeifQbelongsto()vSQvornot.4)RepeatthepreviousstepsuntilQdoesnotbelongto()vSQv.Now()()()1,2,.,Qsrsrsri=+isnotasubsequenceofSQv=()()()1,2,.,1sssri+,soincrease()cnbyone.5)Thereafter,Sisrenewedtobe(1),(2),.,()Ssssri=+,and(1)Qsri=+.TheaboveprocedureisrepeateduntilQisthelastcharacter.AtthistimethenumberofdifferentsubsequencesinPthemeasureofcomplexityis()cn.Inordertoobtainacomplexitymeasurewhichisindependentofthesequencelength,()cnmustbenormalized.Ifthelengthofthesequenceisnandthenumberofdifferentsymbolsinthesymbolsetis,ithasbeenprovedthattheupperboundof()cnisgivenby()(1)log()nancnn=(3)Wherenisasmallquantityand()0nn.Ingeneral,()lognnistheupperboundof()cn,wherethebaseofthelogarithmis,i.e.,lim()()log()nncnbnn=(4)Fora0-1sequence,=2,therefore()2log()nbnn=(5)And()cncanbenormalizedvia()bn.()()()cnCnbn=(6)Where()Cn,thenormalizedLZcomplexity,reflectsthearisingrateofnewpatternsinthesequence17810.ComplexitiesofEEGaredifferentcorrespondingtothedifferentsleepstages.Accordingtotheexperienceandanalysis,thecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.B.ExperimentDataInthisstudy,theEEGdataisfromMIT/BIHPolysomnographicdatabase.Thisdatabaseisacollectionofrecordingsofmultiplephysiologicsignalsduringsleep.SubjectsweremonitoredinBostonsBethIsraelHospitallaboratory.Therecorddataevery30sisfollowedbyaannotationandthisannotaitoncontainssleepstages,heartconditionsandbreathing.Inthisstudy,wechoose“slp01a,slp01b,slp02a,slp02b,slp03,slp04,slp14,slp48”toanalyze.TheEEGchannelsareC4-A1、C4-A1、O2-A1、O2-A1、C3-O1、C3-O1、C3-O1、C3-O1.Thesedatalengthare2h,3h,3h,214h,6h,6h,6h,1016handthesamplingfrequencyis250HZ,markingthecorrespondingsleepingstagesevery30s.C.DATAAnalysisandResultsThestudygot2500pointsfromdifferentsleepingstages10sabouteveryobject,analyzedthesedataandcalculatedthecomplexities.OurprogramisinMATLABandtheresultsobtainedareshowedinTABLE1andFigure.1.TABLE1.Thecomplexityofeachsleepingstage(average)SubjectWakeperiodNREMperiodREMperiodperiodperiodperiodperiodSlp01a0.5012-0.46120.36510.22580.3206Slp01b0.79460.34540.3183-0.3564Slp02a0.62760.32460.27540.21670.20320.2122Slp02b0.77930.75630.2664-0.5508Slp030.39280.36800.26640.2099-0.2799Slp040.66210.58240.58020.2731-0.6073Slp140.41090.27990.24380.2032-0.5057Slp480.78560.51470.50570.1896-0.3251average0.61930.45300.36470.24290.21450.3947Figure.1.Theanalysisofthecomplexityofeachsleepingstage.Fromthetable1,thereistheconclusion:fromWakeperiodto、periodinNREMperiod,thecomplexitiesareallbythemaximumreducinggradually,then,backtoclosetoperiodandperiodwhenREMperiod.TheFig.1alsocanprovetheconclusion.Wefoundweaknonlinearsignaturesinallsleepstagesinthisstudy.Theresultsshowthatduringsleeptherearevarioustransitionsandthedegreeofchaoticityisdependentonthestageofsleep.ThecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.Asaresult,fromshallowtodeepsleep,theoutcomemeansthediminutionoffreedomofbrainactivity.InthecaseofsleepEEGthesleepstagesareconsideredasdistinctpsychophysiologicalstates789.CONCLUDINGREMARKSInthispaper,thisstudycalculatedcomplexityofsleepingEEGsignalsofeighthealthyadults.Theresultsshowthatthenonlinearfeaturecanreflectsleepingstageadequately.Themethodisusefulinautomaticrecognitionofsleepstages.Butithassomelimitations.Complexityisalsosimplebutlosesinformationdetailsinitspreprocessingoforiginalmeasurementdata1.Duetothecoarseningpretreatmentalgorithmofcomplexityandanalysistimesequencefromone-dimensionalangle,thealgorithmofcomplexityiseasytoloseinformation.Theeffectsoftheotherfactorssuchasageandgenderontheperformanceofthenonlinearfeatureextractionmethodarestillunderactivetudy2.Inspiteofthesedifficultiesandshortcoming,complexityisusefulfortheanalysisofsleepEEG.REFERENCES1Wei-XingHe,Xiang-GuoYan,Xiao-PingChen,andHuiLiu,“NonlinearFeatureExtractionofSleepingEEGSignals”,Proceedingsofthe2005IEEE,EngineeringinMedicineandBiology27thAnnualConference.Shanghai,China,September1-4,2005.2DongGuo-Ya,WuXi-Yao,”ThecomparisonBetweenApproximateEntropyandComplexityintheStudyofSleepEEG”,BeijingUniversityofScienceandTechnolongy.3LuWeimin,LiuFubin,“AnalysisoftheNonlinearDynamicsforSleepEEG”,ChinaMedicalEquipment,2008,5(2):16-20.4FuXiaohua,LiHongpei,“SleepandHealth”,ChinaMedicalJournals,2003,38(8).5DingBaoxi,ChenZhihua,ZhaoLi,“CorrelationAnalysisofEEGData”,ProgressinModernBiomedicine,2008,8(1).6LIUHui,HEWei-xing,CHENXiao-ping,“EEGtime-seriesanalysisusing
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題工法培訓(xùn)課件
- 乙狀結(jié)腸造瘺術(shù)護(hù)理查房
- 怎樣做服裝培訓(xùn)
- 高圓圓培訓(xùn)課件
- 重型肺炎嬰兒康復(fù)指導(dǎo)
- 小學(xué)班級管理的論文
- 室內(nèi)設(shè)計(jì)實(shí)踐報(bào)告2000字
- 財(cái)務(wù)部會計(jì)年終總結(jié)
- 有關(guān)教學(xué)反思的論文
- 高中化學(xué)實(shí)驗(yàn)會考
- 第四章-食用香精的應(yīng)用
- 課程替代申請表(模板)
- 設(shè)計(jì)管理資料課件
- 糧食行業(yè)技能競賽糧油保管員考試試題及答案
- 劍橋商務(wù)英語BEC(初級)全套課件
- 浪琴環(huán)球馬術(shù)冠軍賽上海站官方贊助商合作方案課件
- 醫(yī)療器械臨床評價(jià)課件
- 現(xiàn)場工程量確認(rèn)單
- 2022年廣東省佛山市順德區(qū)承德小學(xué)小升初數(shù)學(xué)試卷
- 黃亮和李燕的創(chuàng)業(yè)故事(鳳山書屋)
- DB61∕T 5006-2021 人民防空工程標(biāo)識標(biāo)準(zhǔn)
評論
0/150
提交評論