




已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
,第九章,第五節(jié),一、一個(gè)方程所確定的隱函數(shù) 及其導(dǎo)數(shù),二、方程組所確定的隱函數(shù)組 及其導(dǎo)數(shù),隱函數(shù)的求導(dǎo)方法,1) 方程在什么條件下才能確定隱函數(shù) .,例如, 方程,C 0 時(shí), 能確定隱函數(shù),C 0 時(shí), 不能確定隱函數(shù),2) 方程能確定隱函數(shù)時(shí),研究其連續(xù)性,可微性及求導(dǎo)方法問(wèn)題.,本節(jié)討論:,一、一個(gè)方程所確定的隱函數(shù)及其導(dǎo)數(shù),定理1. 設(shè)函數(shù),則方程,單值連續(xù)函數(shù) y = f (x) ,并有連續(xù),(隱函數(shù)求導(dǎo)公式),定理證明從略,僅就求導(dǎo)公式推導(dǎo)如下:, 具有連續(xù)的偏導(dǎo)數(shù);,的某鄰域內(nèi)可唯一確定一個(gè),在點(diǎn),的某一鄰域內(nèi)滿(mǎn)足,滿(mǎn)足條件,導(dǎo)數(shù),兩邊對(duì) x 求導(dǎo),在,的某鄰域內(nèi),則,若F( x , y ) 的二階偏導(dǎo)數(shù)也都連續(xù),二階導(dǎo)數(shù) :,則還可求隱函數(shù)的,例1. 驗(yàn)證方程,在點(diǎn)(0,0)某鄰域,可確定一個(gè)單值可導(dǎo)隱函數(shù),解: 令,連續(xù) ;,由 定理1 可知,導(dǎo)的隱函數(shù),則,在 x = 0 的某鄰域內(nèi)方程存在單值可,且,并求,兩邊對(duì) x 求導(dǎo),兩邊再對(duì) x 求導(dǎo),令 x = 0 , 注意此時(shí),導(dǎo)數(shù)的另一求法, 利用隱函數(shù)求導(dǎo),定理2 .,若函數(shù),的某鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù) ;,則方程,在點(diǎn),并有連續(xù)偏導(dǎo)數(shù),定一個(gè)單值連續(xù)函數(shù) z = f (x , y) ,定理證明從略, 僅就求導(dǎo)公式推導(dǎo)如下:,滿(mǎn)足, 在點(diǎn),滿(mǎn)足:,某一鄰域內(nèi)可唯一確,兩邊對(duì) x 求偏導(dǎo),同樣可得,則,例2. 設(shè),解法1 利用隱函數(shù)求導(dǎo),再對(duì) x 求導(dǎo),解法2 利用公式,設(shè),則,兩邊對(duì) x 求偏導(dǎo),例3.,設(shè)F( x , y)具有連續(xù)偏導(dǎo)數(shù),解法1 利用偏導(dǎo)數(shù)公式.,確定的隱函數(shù),則,已知方程,故,對(duì)方程兩邊求微分:,解法2 微分法.,二、方程組所確定的隱函數(shù)組及其導(dǎo)數(shù),隱函數(shù)存在定理還可以推廣到方程組的情形.,由 F、G 的偏導(dǎo)數(shù)組成的行列式,稱(chēng)為F、G 的雅可比 行列式.,以?xún)蓚€(gè)方程確定兩個(gè)隱函數(shù)的情況為例 ,即,雅可比,定理3.,的某一鄰域內(nèi)具有連續(xù)偏,設(shè)函數(shù),則方程組,的單值連續(xù)函數(shù),且有偏導(dǎo)數(shù)公式 :, 在點(diǎn),的某一鄰域內(nèi)可唯一確定一組滿(mǎn)足條件,滿(mǎn)足:,導(dǎo)數(shù);,(P86),有隱函數(shù)組,則,兩邊對(duì) x 求導(dǎo)得,設(shè)方程組,在點(diǎn)P 的某鄰域內(nèi),解的公式,故得,系數(shù)行列式,同樣可得,例4. 設(shè),解:,方程組兩邊對(duì) x 求導(dǎo),并移項(xiàng)得,求,練習(xí): 求,答案:,由題設(shè),故有,例5.設(shè)函數(shù),在點(diǎn)(u,v) 的某一,1) 證明函數(shù)組,( x, y) 的某一鄰域內(nèi),2) 求,解: 1) 令,對(duì) x , y 的偏導(dǎo)數(shù).,在與點(diǎn) (u, v) 對(duì)應(yīng)的點(diǎn),鄰域內(nèi)有連續(xù)的偏導(dǎo)數(shù),且,唯一確定一組單值、連續(xù)且具有,連續(xù)偏導(dǎo)數(shù)的反函數(shù),式兩邊對(duì) x 求導(dǎo), 得,則有,由定理 3 可知結(jié)論 1) 成立.,2) 求反函數(shù)的偏導(dǎo)數(shù).,從方程組解得,例5的應(yīng)用: 計(jì)算極坐標(biāo)變換,的反變換的導(dǎo)數(shù) .,同樣有,所以,由于,內(nèi)容小結(jié),1. 隱函數(shù)( 組) 存在定理,2. 隱函數(shù) ( 組) 求導(dǎo)方法,方法1. 利用復(fù)合函數(shù)求導(dǎo)法則直接計(jì)算 ;,方法2. 利用微分形式不變性 ;,方法3. 代公式 .,思考與練習(xí),設(shè),求,提示:,解法2. 利用全微分形式不變性同時(shí)求出各偏導(dǎo)數(shù).,作業(yè) P87 3 , 6, 7 , *9 , 10(1); (3),11,第六節(jié),由d y, d z 的系數(shù)即可得,備用題,分別由下列兩式確定 :,又函數(shù),有連續(xù)的一階偏導(dǎo)數(shù) ,1. 設(shè),解: 兩個(gè)隱函數(shù)方程兩邊對(duì) x 求導(dǎo), 得,(2001考研),解得,因此,2. 設(shè),是由方程,和,所確定的函數(shù) , 求,解法1 分別在各方程兩端對(duì) x 求導(dǎo), 得,(1999考研),解法2 微分法.,對(duì)各方程兩邊分別求微分:,化簡(jiǎn)得,消去,可得,二元線(xiàn)性代數(shù)方程組解的公式,解:,雅可比(1804 1851),德國(guó)數(shù)學(xué)家.,他在數(shù)學(xué)方面最主要,的成就是和挪威數(shù)學(xué)家阿貝兒相互獨(dú),地奠定了橢圓函數(shù)論的基礎(chǔ).,他對(duì)行列,式理論也作了奠基性的工作.,在偏微分,方程的研究中引進(jìn)了“雅可比行列式”,并應(yīng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省邢臺(tái)市質(zhì)檢聯(lián)盟2024-2025學(xué)年高一下學(xué)期4月期中聯(lián)考數(shù)學(xué)試題(解析)
- 2025年飛機(jī)貨物自動(dòng)裝卸系統(tǒng)合作協(xié)議書(shū)
- 醫(yī)學(xué)畢業(yè)生面試核心要點(diǎn)與策略
- 醫(yī)學(xué)生暑期社會(huì)實(shí)踐答辯
- 農(nóng)田保護(hù)承包運(yùn)營(yíng)合作協(xié)議
- 虛擬貨幣安全托管與兌換服務(wù)協(xié)議
- 培訓(xùn)機(jī)構(gòu)兼職講師全面合作協(xié)議書(shū)
- 光伏建筑一體化系統(tǒng)維護(hù)與優(yōu)化升級(jí)協(xié)議
- 特種功能建筑復(fù)合材料采購(gòu)及系統(tǒng)集成服務(wù)協(xié)議
- 緊急處理國(guó)際商務(wù)法律文件翻譯協(xié)議
- PUMA560機(jī)器人運(yùn)動(dòng)學(xué)分析
- UI界面設(shè)計(jì)交互設(shè)計(jì)教學(xué)
- 2021版檢定和校準(zhǔn)實(shí)驗(yàn)室程序文件
- 鋼箱梁計(jì)算分析與案例詳解
- 絞肉機(jī)的設(shè)計(jì)本科生畢業(yè)論文
- 山東省某房地產(chǎn)開(kāi)發(fā)項(xiàng)目建設(shè)節(jié)能評(píng)估報(bào)告
- 超聲引導(dǎo)豎脊肌平面阻滯
- 人工挖孔安全檢查記錄表
- NPM網(wǎng)絡(luò)性能監(jiān)控平臺(tái)測(cè)試方案
- 生物化學(xué)期末考試題庫(kù)與答案
- 新版VDA6.3過(guò)程審核實(shí)例(含評(píng)分矩陣)
評(píng)論
0/150
提交評(píng)論