




已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
輕量級絲杠作動器設計 在 便攜的機器人 的 應用 機械設計報 凱文 W.霍蘭德 托馬斯 G.唐 一個便攜機器人是直接與它的用戶聯(lián)系的一個受控和開動的設備。 同樣 , 也要求 這個設備 必須也 是便攜 的 ,輕量級 的,最重要的是安全的 。 為了 達到這些目標。標準絲杠的設計通常 不能很好的按要求 執(zhí)行這些。典型的絲杠有 很 低投球角度和大 的 半徑,從而產(chǎn)生 很 低 的 機械效率和 很大的重量 。 可是 ,使用 文本中 的設計程序 , 效率和重量 是被 改進 的 ; 因而 可以 產(chǎn)生 一種與人 的 肌肉相似 的絲杠系統(tǒng)。例子 中的 問題 說明一個可行性的絲杠設計應該是 277 的功率質(zhì)量比 ,接近 驅(qū)動它的馬達,即 312W/kg,并且機械效率 為 0.74和最 大動能 到 11.3 kN/kg的絲杠設計。 1引言 在美國 , 有五分之一的人有不同形式的殘疾 , 這些人當中, 61的人患有感覺或身體殘疾。在老年人 中 , 8 到 19 是 步態(tài)失調(diào)。許多殘疾人可以 獨立的 受益于某種形式機器人 的協(xié)助 。 一個便攜 機器人是一個 被 計算機控制和驅(qū)動 的 裝置,是直接接觸用戶 的 。這種裝置 的目的是 增強 用戶的行為能力 。在 病人 治療 期間 , 它可以用于訓練, 或 是 僅僅當作一 種 協(xié)助 病人完成日常生活的裝置 。 便攜 的含義是指 機器人必須攜帶方便,重量輕,而且安全 是最 重要的 。相比之下,工廠車間 的 機器人是沒有這些 功能的 ,因此,要簡單修改現(xiàn)有的技術是不可能 實現(xiàn)的 。 設計便攜機器人的標準方法 有三大局限性 ; 1低電池功率密度 ; 2電機 的 低 強度質(zhì)量比; 3重量和安全 性 的機械傳動系統(tǒng)。 這些 工作 的目的 是審查絲杠驅(qū)動器 的設計過程 ;結(jié) 果顯示 在 局限性 第三項方面有了重大改進, 即,重量和安全性的機械傳動系統(tǒng)。 2 背景 有 趣 的是, 在 便攜機器人學 領域 的研究已經(jīng)超過了 過去十年 的 增長。最近 ,浪涌的 利益可以歸因于電子小型化、微處理器能力和無線技術擴散的推進 。 提高 便 攜計算機控制 設備 的能力 的可行性 是可以實 現(xiàn)的。 然而,除便攜式的計算平臺的可及性之外,必須 談 及物理機制的問題。在便攜機器人發(fā)展 中, 主 要的問題 是 強度質(zhì)量比 、重量和安全。 有 多少 可利用的動力 可 完成 機械功?機器人設備 有 多少 額 外的 力給 人? 還有 , 如何 轉(zhuǎn)移這 些動 力和怎么 一直 維護安全 等 ? 用戶和開動的機器人 之間的安全互作用 在便攜機器人 設計 中是一個首要問題 。 一個便攜的機器人系統(tǒng)的目的 是 將操作員 通過 存貯設備 獲得的努力和 能量 抵消 ,即,電池、燃料電池和空氣坦克。作動器 的 效率和整個系統(tǒng) 的 重量沉重影響分享在操作員和機器人之間的工作負擔。 在很多情況下,機器人加給用戶的 額外力量 , 能多完成 一項 測量 任務。這意味著機器人 不僅 必須增添操作員的能力, 也必須 補嘗它自己另外的重量。 2.1 作動器 的 比較 。 很 多機器人作動器 被比作成 人的骨骼肌 的 標準。 設計師 了 解 他們好 的功率強度比 和 優(yōu)秀的 強制生產(chǎn)能力 就是為了動作器與骨骼肌相比擬 。為了匹配骨骼肌的性能, 重要的是 知道其中一些措施。不幸地 是 , 生物文學中的普遍性 是 :被測 量的肌肉 參數(shù)是 變化繁多 的 。雖然報告 參數(shù) 有一個寬 的 變化,這些 參數(shù)一直能 給生物材料 行為 標度的感覺。制成表的數(shù)據(jù)和 幾個原始估計數(shù)據(jù) 被用于描述人的肌肉表現(xiàn)屬性和結(jié)果 如表 1所示 。 表 1: 作動器比較: 通過 機械效率 ,勢能,和校正動能對 各種各樣的作動器類型 進行比較: 允許 與 有效能的運用 直接進行比較 。然而,在便攜機器人作動器的發(fā)展 中這兩個參量需要得到審查 ??紤] 到 所有作動器在 100%效率 中運行 ,然后整個小組能直接地由他們各自的功率強度比進行比較 。 可是 ,如果 勢能中的動力 被提供給每臺作動器,由于他們各自 的 效率 僅僅是輸出 一小部分 動 力。所以,適當?shù)乇容^上面被描述的作動器,他們校正的 勢能 必須計算 ,即: (1) 機械效率和 Pwt是原始的 功率質(zhì)量比 。 對各種動作器演算的 結(jié)果如 表 1所示 表 1的內(nèi)容是從文獻或基于那些文獻的估計中獲得的 。 dc馬達的 參數(shù) 是 :Maxon RE40馬達 。 傳動箱組合 的參數(shù) 在 Maxon 2004編目 中能夠 找到。一臺電系列有彈性作動器的 參數(shù) 用于估計這些參 數(shù) 。然而,一個 一般 大小的絲杠系統(tǒng)可能有更好的 強度質(zhì)量比 , 因為 它 有很高的負 載 能力 ,并且 有很 低的重量。對于 McKibben樣式 的 空氣肌肉, 從 各種各樣文 獻中發(fā)現(xiàn)了 描述它 的 相關 方法。 比較中顯然顯示的 是校正 功率質(zhì)量比, cP , dc馬達的參數(shù) ,空氣肌肉 和 人的骨骼肌是 都是簡單匹配的 。然而, 馬達上一旦加上額外的硬件 ,它的 執(zhí)行力會 極大減 小 。 基于動作器的重量, 如果能 修改一個不是很大的 dc馬達重量的機械傳動系統(tǒng),則 它接近于 人的骨骼肌的功能可 能 會實現(xiàn) 。 3絲杠設計 如上所見 , 當一個典型絲杠系統(tǒng) 與其他便攜機器人作動器 在 概念 上進行 比較 時,它的性能是有限的 。 產(chǎn)生這種 低性能的主要原因是 它的 機械效率 很低 。 如果 在一個標準絲杠系統(tǒng) 中使用 大約是 =0.36的摩擦系數(shù),會有更好的潤滑效果。 相反,典型的球螺絲系統(tǒng)有非常好機械效率。 滾 珠軸承的滾動接觸對這個系統(tǒng)的摩擦作用 會保持很 低。然而, 效率雖然有了改進 ,球螺絲作動器的 cP t參數(shù) 仍然低于那骨骼肌, 這是因為 球螺絲系統(tǒng)的重量 很大 。 如果 改進球螺絲的 cP 性能 , 那么重量的減少就可以實現(xiàn)了 。 機械設計學報 圖 1 絲杠 外形 ; 主角 l 在 一個 單 一螺旋螺絲 中是等效的 用于設計 圍攏絲杠的基本數(shù)學也適用于球螺 絲系統(tǒng)。這兩 個 機械傳輸之間的 主要 差別是他們的摩擦系數(shù)。在以下部分 會考慮 影響絲杠重量和機械效率 的 設計參數(shù),并且對 它 的cP 進行改進 。 3.1絲杠 外形 在圖 1顯示的 是普通 絲杠 的 基本 外形 。絲杠的關鍵參量是主角 l,螺絲半徑 r和前置角 。主角 l是螺絲每次 改進達到的位移數(shù)量, 一個高精度螺絲有非常 小 或 非常好 的 主角 。在圖 1的正三角形顯示 的 螺絲 的唯一一次改進被剝開的構造 。前置角 代表螺紋的斜面或傾斜 度 。 三角 的基礎 是螺絲軸的圓周,三角 形 的右 腿 是它的主角 , 螺線螺紋的弦 代表 路徑長度。 并且在正三角形 中 看 出使螺母 舉 起負 載 的強大的力 。 負 載的力量顯示為 F ,螺絲的扭矩 強度 是 F ,在螺絲螺紋 上 的正常反作用力是 N,并且摩擦力是 N。從這張圖 中 , 舉起 的扭矩的 等式就可以是: (2) 3.2 對 R。 還 考慮,絲杠的 外形 在圖 1可以顯示 主角 l是由螺絲半徑 r和前置角 描述的。這些可 改變 量 之間的關系 是: (3) (4) 公式 4的 意思 是 r、螺絲半徑和 ,前置角, 都 是 需 要 螺絲 主角 l的 。這意味著在 r和 之間 存在 一個連續(xù)的關系。雖然存在這個連續(xù)的關系,多數(shù)螺絲系統(tǒng) 還是被 設計 成 非常小 的 前置角。 從 首選螺絲大小的 經(jīng)驗來看 ,雖然各自的直徑 都在 變化, 但 前置角 都小于 3。 在公式 4種顯 示 對所 有螺絲主角 的需求 ,各種各樣的半徑 都 可 以 使用。 這個意義在于 螺絲半徑 r的變小 ,螺絲的重量 是通過 r2減小的 。因此, 要 補嘗小螺絲半徑, 必須考慮前置角 這個參數(shù)。 前角, 圖 2絲杠系統(tǒng)機械效率:遮蔽一部分的圖表多數(shù) 是絲杠 的典型設計區(qū)域。 是小的,半徑大,重量大,并且效率是 較 低的。在圖表的未遮住的區(qū)域設計, 是大 的 ,暗示更小的半徑、更低的重量和 更 高 的 效率。 3.3效率對阿爾法 。 對于一個便攜機器人 的 設計,不僅絲杠作動器的重量 是一個重 要問題, 而且 作動器的效率也是 非常 關鍵的。如上所述,螺絲半徑的減 小可以使動作器的重量大大減小 。然而, 要 減小 螺絲半 徑,必須增加前置角 , 以保持 恒定的 主角 。當看 公式 2時 ,可以 看 出 要求 承受負載的 力 矩 Fw,取決于兩前置角 和 摩擦系數(shù) . 影響 螺絲效率 的是 前置角和摩擦系數(shù),圖 2顯示對摩擦系數(shù) _和前置角 _的沖擊 在 于 絲杠系統(tǒng)的效率 (5) 在圖 2的每條線 是基于 摩擦系數(shù)不同的 參數(shù) 。幾份 普通 的工程材料 作為 例子給讀者 一個在絲杠系統(tǒng)中能有不同物質(zhì)或涂層的作用的感覺 。這個圖表示,當前置角增加,機械效率 就增加 ; 或者至 少 到達一個峰值。 理論上, 選擇 最大效率采摘角度是有利的。 一個絲杠系統(tǒng)在高效率運行時需要使負載力矩達到最小 Fw。 在高峰值 效率發(fā)生的角度可以取決于 與角度 效率 有關的參數(shù) ,結(jié)果 是可以看到的。 (6) 雖然一個高前置角可能 提高 效率, 但 它 也 可能導致 反驅(qū)動 系統(tǒng)。一個 反驅(qū)動 系統(tǒng)是 一種負 載 力矩, 沒有 力 矩協(xié)助 的情況下,螺絲可能 自轉(zhuǎn),因而允許 負 載 自我降低 。 反驅(qū)動 絲杠 不適合應用于 汽車起重器,但是 可以應用于 便攜機器人 當中 。 因此反驅(qū)動 的前置角 是: (7) 不管 產(chǎn)生多么 高 的負 載力量 ,多么 低 的 摩擦系數(shù)系統(tǒng) , 前置角和摩擦系數(shù) 總 是影響這 些條件 的 ,例如球螺絲, 反驅(qū)動 是一個必然結(jié)果。 4 實用考慮 理論上,如 先前的文獻 所顯示 ,是希望 螺絲半徑 r減小的 , 甚至 到一個幾乎微觀 尺度 。然而,從設計和制造業(yè)方面 來講, 這不是一種實用 的 解 決方案 。雖然從重量和效率的角度 來講 小螺絲 的 直徑和高前置角 是極其重要的 , 但 他們可能不允許設計師適應物理系統(tǒng)的力量需要。例如軸向產(chǎn)生,壓縮折和機制困境 都 需要被考慮??紤] 到單 一 的 超薄的螺絲也許是輕量級 的 ,它 可 能沒有一個系統(tǒng)所需要足夠的負 載 能力 。 但可以 使用 單 一 的, 或幾個螺絲, 就會有足夠大的負載能力 。用幾個小螺絲 承受 大載 荷是沒有重量優(yōu)勢的 , 作為因計算一個螺絲斷面產(chǎn)生的重量和壓強 。然而,使用幾個小螺絲 承受 載 荷 可能允許對高前置角的持續(xù) 使用 和 在高效率 中運行 ,甚 至 在 很高負載 。通過推擠絲杠原材料物產(chǎn)極限,可以達到 軸向很高的負載 。這種 工作 方法 的好處在于 一個緊張系統(tǒng)比它壓縮軸承更好運作 的 系統(tǒng)。 當考慮到減小 一個 既長 又細的 螺絲 的負載時, 類似 于 McKibben作動器甚至人的肌肉, ( 絲杠作動器能被設計負擔僅緊張裝載 ) ,因而消 除 共折的考慮 。在一個便攜機器人 中 創(chuàng)建緊張驅(qū)動系統(tǒng)不一定意味著需要一個對抗性。實際上, 與一個 協(xié)助機器人 相比 ,殘疾人在 做單一的直接動作時,肌肉存在 弱點,因此, 這些人是非常需要動作器幫助的。 對于 那些 推擠螺絲半 徑 和因 此導致 前置角 的極限超過 最大 效率 的設計師,摩擦 極 限角度多 少 是 可以 傾斜的。 所有這些 的物理解釋是系 統(tǒng)捆綁 或鎖 , 由 導出的公式 2可以 看見。一 個由公式( 2)導出,可以 產(chǎn)生以下 關系 (8) 除被列出的實用考慮之外, 還 可能 存在著 許多其他問題。包括扭轉(zhuǎn)力僵硬或 屈服力 甚至熱擴散 等 。這些因素中的每一個 都 是重要的并且 都需要我們考慮??墒?, 這個練習 的目的 是展示 選擇一個 設計或選擇螺絲系統(tǒng) 的 典型方法。這個選擇方法的好處是 可 直接適用于一個便攜機器人系統(tǒng)的設計。 5 例子 中的 問題 展示一 份 粗 糙 設計 報告 ,考慮高峰距小腿關節(jié)扭矩在 到一個有能力裝載 80 kg的個體 并且 是 0.8 Hz的 跨步頻率 期間的連接扭矩 。在步態(tài)期間的腳腕扭矩 峰值 大約 是 100毫微米。這個峰 值 大致 發(fā)生在 45%的 步態(tài)周期。步態(tài)周期 是指 一只腳跟 的停止到這支腳跟下一次停止的時間 。腳趾 是承受另一只腿重力和開始搖擺的點 。 搖擺階段 的判斷是 步態(tài)再 次 安置腳回到腳跟 停止 位置 時,然后 下 一 個步態(tài)周期開始。 例如,讓我們考慮修造 一個 腳腕步態(tài)協(xié)助絲杠作動器。我們假設 協(xié)助水平在 30%左右和到小腿關節(jié)是 12厘米的力矩臂。 表 2作動器 問題 比較 : 絲杠設計 I和 II與 人的肌肉 的 效率 比較 , 對勢能的比較 ,校正 勢能和動能的 措施的 比較。 這些 參數(shù)都可以根據(jù)自己的個人經(jīng)驗并且在合理的范圍內(nèi)進行修改和變化。參數(shù) 和 可用的 參量 接近于 Maxon馬達 , 即 RE40, 這個例子中, 主角長度的范圍 已經(jīng)確定了 ;它的范圍可以是 解 決設計兩 個絲杠 的 問題 :第一個設計 問題是解決最大效率 。假設 是 2 mm和 =0.05,螺絲在 =43.5、半徑是 0.34mm 的地方 產(chǎn)生的效率是 90%。這樣 小的 一條半徑, 需要多個螺絲承受負載 。即使如此, 估計 作動器 的勢能 是 280 W/kg 。通過馬達重量和預測的傳輸系統(tǒng), 劃分需要的功率 峰值就可以得出勢能的大小 。我們 從 以前的工作 知道了 ,輔助組分的重量成比例 可以減小螺絲和螺釘?shù)闹亓?。 第 二個設計,絲杠 II,從商業(yè)供營商 得到可利用的維度 。 螺絲 的 =13.6和 0.82的效率 。 更 大一些 的維度 也可行 , 動作器的勢能最好是 277 W/kg。為了達到比較的目的, 這個例子出現(xiàn)的 問題結(jié)果 制成了表格 。表 2顯示兩個絲杠設計 方案 的數(shù)字結(jié)果。這些 參數(shù) 與 先前的 dc馬達 參數(shù) 和人的骨骼肌的估計 值進行 比較。 通過例子,動能大小是基于力的峰值進行計算的。 6 討論 在 分析解決最大效率的方案上 ,絲杠設計 I顯示 了 一個 單 一小半徑螺絲永遠不會處理 所要求的負 載。 可是 , 多個 螺絲 同時 平行執(zhí)行那項任務 會有 同樣高 的 效率。 雖然 使用典型的技術 不容易制造出 一個 0.34 mm半 徑 的 螺絲, 但用這種方法 是 可以實現(xiàn)的(即 ,使用多個螺絲產(chǎn)生高效率) 。 要設計一個特殊的絲杠,效率是沒有極限的。 絲杠設計 II顯示 , 有 一種可行的解 決方案可以解決腳腕的問題, 校正 功率質(zhì)量比參數(shù)使其 非常接近 于 人的肌肉。使用一種相似的方法,球 形 螺絲機制能有益于 它的 表現(xiàn) ,一般方法是 創(chuàng)建 一個驅(qū)動的背面, 低重量和高效率 的 螺絲系統(tǒng) 可以使基于 dc馬達的動作器的便 攜機器人應用 有 一種 有力 解答。 圖 3 原型作動器,高效率絲杠 前面提到,一臺便攜機器人作動器不僅 要 有好 的執(zhí)行 能力, 而且還要對它的用戶有一定的 安全 性 。 在考慮安全方面 時 , ( 駕駛 )是 便攜絲杠作動器 所需要的 。 ( 駕駛 ) 允許 操作者任意安裝沒有動力的螺釘,因而使它的 阻礙減到最小。另 一方面 , 在螺絲的末端設計一塊閑置的部分以防止馬達和用戶受到損壞 。對人的損傷 可以 通過安置螺絲的末端范圍在 用戶 的生理 安全 極限內(nèi) 來 避免 ,即一旦遇到危險強度,可以得到短期的脫離 。所有這些方法 都需要得到 重 點 考慮,并且應該 在 設計過程中 早期解決 。安置機械部件必須包括特別 的 防備措施。 防備措施必須超出軟件或控制器范圍 ; 因此,在機械設計 中 應該包括他們。保證 用戶 的安全是在 設計 所有協(xié)助機器人 時應該是 最優(yōu)先考慮的事 , 我們的 實驗室也調(diào)查了便攜作動器的其他類型??磮D 3。 這些技術 幫助 我們 保持 設備的 整體大小和重量 打 到最低。 7 結(jié)論 一臺便攜機器人作動器必須有好 的功率勢能比 ,好 的 機械效率, 好的強度質(zhì)量比 ,并且一定是安全的。對于一個 具有好的功率的 dc馬達,改進它力量 的唯一方法是 增加傳動系統(tǒng)。傳統(tǒng)上,這 種方法 導致了 dc馬達作動器 功率質(zhì)量比的增加以至于它的執(zhí)行力筆直下降 。 可是,我們的方法可以用于設計絲杠和球形絲杠的力, 例如一個便攜的協(xié)助機器人 。 Design of Lightweight Lead Screw Actuators for Wearable Robotic Applications Journal of Mechanical Design Kevin W. Hollander Thomas G. Sugar A wearable robot is a controlled and actuated device that is in direct contact with its user. As such, the implied requirements of this device are that it must be portable, lightweight, and most importantly safe. To achieve these goals, The design of the standard lead screw does not normally perform well in any of these categories. The typical lead screw has low pitch angles and large radii, thereby yielding low mechanical efficiencies and heavy weight. However, using the design procedure outlined in this text, both efficiency and weight are improved; thus yielding a lead screw system with performances that rival human muscle. The result of an example problem reveals a feasible lead screw design that has a power to weight ratio of 277 W/kg, approaching that of the dc motor driving it, at 312 W/kg, as well as a mechanical efficiency of 0.74, and a maximum strength to weight ratio of 11.3 kN/kg 。 1 Introduction One in five persons in the United States live with some form of disability, with 61% of those suffering from either a sensory or physical disability.As an example, within the elderly population,8% to 19% are affected by gait disorders . Many disabled individuals could benefit from some form of robotic intervention. A wearable robot is a computer controlled and actuated device that is in direct contact with its user. The purpose of such a device is the performance/strength enhancement of the wearer. It can be used in training, in therapy, or simply as a device to assist in functional daily living. The implication of the term “wearable” isthat the robot must be portable, lightweight, and most importantly safe. In contrast, a factory floor robot is none of these things, so the simple adaptation of existing technology is not possible. The standard approach to wearable robot design suffers from three major limitations; 1 Low battery power density; 2 motors with low “strength to weight” ratios; 3 weight and safety of a mechanical transmission system. The goal of this work is to review the design process of a lead screw actuator; the result of which will demonstrate significant improvements over the limitations described in item number 3, i.e., the weight and safety of the mechanical transmission system. 2 Background Interest in the area of wearable robotics has grown over the last decade. The recent surge of interest can be attributed to advancements in electronic miniaturization, microprocessor capabilities, and wireless technology proliferation. The feasibility of a portable computer controlled strength enhancing device is closer to reality However, aside from the availability of portable computation platforms, issues of the physical mechanism must still be addressed. The main issues in any wearable robot development are power, weight, and safety. How much power is available to do mechanical work? How much additional weight does the robotic device add to the person? And, how can this power be transferred and still maintain safety? The safe interaction between the wearer and theactuated robot has to be the primary concern in a wearable robot design. The purpose of a wearable robotic system is to offset the effort or energy of the operator by some amount of energy from a storage device, i.e., battery, fuel cell, and air tank. The sharing of the work load between the operator and the robot is heavily influenced by actuator efficiencies and the overall system weight. The additional weight that the robot adds to the user, in many cases, can increase the total amount of work required to accomplish a given task. This means that the robot not only has to augment the operators abilities, but must also compensate for its own additional weight. 2.1 Actuator Comparisons. Human skeletal muscle is the “gold” standard by which many robotic actuators are compared. Known for their good “power to weight” ratios and excellent force production capabilities, skeletal muscle performance is what most actuator designers would like to match. In order to match the performance capabilities of skeletal muscle, it is important to know some of its measures. Unfortunately, common throughout biological literature is a wide variation of measured muscle properties. Although reported values have a wide variance, these values can still give a sense of scale in which biological materials behave. Data tabulated and estimated from several sources were used to describe the attributes of human muscle performance, and the result of which can be seen in Table 1. Table1: Actuator comparison: Compares various actuator types by mechanical efficiency, power to weight ratio, “corrected”power to weight ratio, and strength to weight ratio Measures allows the direct comparisons to be made based upon utilization of available energy. However, both of these parameters need to be examined in the development of a wearable robotic actuator. Consider that if all actuators were to operate at 100% efficiency, then the entire group could be compared directly by their respective power to weight ratios. However, if only the power stated in the power to weight ratio were supplied to each actuator, then because of their respective efficiency, only a fraction of that power would be yielded as output. Therefore, to appropriately compare the above described actuators, their corrected power to weight( cw) ratios must be computed (1) where is the mechanical efficiency and Pwt is the original power to weight ratio. The results of this calculation for various kinds of actuators can be seen in Table 1. Values in Table 1 were obtained either by referenced literature or estimations based upon that literature. The values for the dc motor are for the Maxon RE40 motor. The values for the + gearbox combination were also found in the Maxon 2004 catalog. values from an electric Series Elastic Actuator were used to estimate these parameters. However, a similiarly sized lead screw system will likely have a better strength to weight ratio, due to its ability to carry higher loads and its nut is of lower weight. For the McKibben style air muscles, a variety of literature was found describing its relevant measures. Immediately evident in this comparison is that the corrected power to weight, cP , values of the dc motor, the air muscle and human skeletal muscle are all similarly matched. However, once additional hardware is added to the dc motor, its performance decreases significantly. If one could create a mechanical transmission system that did not significantly alter the weight of the dc motor based actuator, then performances very near that of human skeletal muscle could be achieved. 3 Lead Screw Design。 Seen above, the performance of a typical lead screw system is limited when compared to other wearable robotic actuator concepts. The primary reason for its low performance is poor mechanical efficiency. The coefficient of friction in a standard lead screw system is approximately =0.36., metal on metal, better results are possible if lubrication is used. In contrast, the typical ball screw system has very good mechanical efficiency. The rolling contact of the ball bearings keeps the frictional effects on this system to an absolute minimum. However, even with its improved efficiencies, the cP value for the ball screw actuator is still well below that of skeletal muscle, due directly to the considerable weight of the ball screw system. To improve the cP performance of a ball screw, a significant reduction of weight must be achieved. Journal of Mechanical Design Fig. 1 Lead screw geometry; as drawn, pitch p and lead l are equivalent in a single helix screw The basic mathematics surrounding the design of a lead screw can also apply to a ball screw system. The primary difference between these two mechanical transmissions is their coefficient of friction. In the following section, an exploration of the design parameters that influence weight and mechanical efficiency of a lead screw will be considered and thus improvements to its ccan be made. 3.1 Lead Screw Geometry. Shown in Fig. 1 is the basic geometry of a common lead screw. The key parameter of a lead screw is the lead, l, which is dependent on screw radius, r, and lead angle . The lead, l, is the amount of displacement achieved for each revolution of the screw. A high precision screw has a very short or fine lead. The right triangle in Fig. 1 shows the unwrapped geometry of a single revolution of a screw. The lead angle , represents the incline or slope of the screw thread. The base of the triangle is the circumference of the screw shaft, the right leg of the triangle is its lead, and the hypotenuse representsthe path length of the helical thread. Also seen on the right triangle are the forces present on a screw that is lifting a load. The force of the load is shown as Fw, the force resulting from the torque on the screw is F , the normal reaction force on the thread of the screw is N, and the frictional force is N. From this diagram, the following equation for a lifting torque can be derived (2) 3.2 Alpha Versus R. Considering, again, the geometry of a lead screw in Fig. 1, it can be shown that leadl, is described both by screw radiusr, and lead angle . The relationship between these variables is given in (3) ( 4) The meaning of Eq( 4) is that both r, screw radius, and , lead angle, are necessary to create a screw lead, l. This means that there exists a continuous relationship between r and . Although this continuous relationship exists, most screw systems are designed with very small lead angles. A review of the preferred ACME screw sizes reveal that although the individual diameters vary, the lead angles are all less than 3. From Eq( 4) .it is shown that for any screw lead desired, a variety of radii could be used. The significance of this is that as screw radius, r, shrinks, the weight of the screw shrinks by a factor.r2 Thus, to compensate for small screw radii, a larger value of lead angle , must be considered. Fig. 2 Mechanical efficiency of lead screw systems: Shaded part of the graph is the typical design region for the majority of lead screws. is small, radius is large, weight is large, and efficiencies are lower. Designs in the unshaded region of the graph, where is large, implies smaller radii, lower weight, and higher efficiencies. 3.3 Efficiency Versus Alpha. For a wearable robot design, not only is the weight of a lead screw actuator an important issue, but the efficiency of an actuator is also key. As mentioned before, a decrease in screw radius can achieve significant reductions in actuator weight. However, while the screw radius is reduced, the lead angle, must be increased to maintain a constant lead. When looking at Eq(2). it is seen that the torque required to lift a load, Fw, is dependent upon both lead angle, as well as the coefficient of friction。 Relating the efficiency of a screw to both lead angle and coefficient of friction, Figure 2 shows the impact on both coefficient of friction, and lead angle, on the efficiency of a lead screw system ( 5) Each line in Fig. 2 is based upon a different value of the coefficient of friction. Several common engineering materials are given as examples to give the reader a sense of what effect different materials or coatings could have on the efficiency of a lead screw system. This figure shows that as the lead angle increases, so does the mechanical efficiency; or at least until a peak value is reached. Ideally, it would be advantageous to pick the angle, based upon maximum efficiency. A lead screw system operating at peak efficiency minimizes the input torque requirements to lift the load Fw. The angle at which peak efficiency occurs can be determined by taking the derivative of efficiency with respect to angle, the result of which can be seen in (6) Although a high lead angle can lead to a high efficiency, it can also lead to a system that is “back-drivable”. A back-driveable system is one in which the load, Fw, can cause a rotation of the screw without the assistance of applied torque, thus allowing the load, Fw, to self-lower. A back-driveable lead screw is a bad idea for a car jack, but is desirable in a wearable robot. For the lead angles in which back-drive will occur (7) Lead angle and coefficient of friction are all that influence this condition, regardless of how high the load force becomes. Fora very low coefficient of friction system, such as a ball screw,back-drive is an inevitable consequence. 4 Practical Considerations Ideally, as shown in the previous text, it would be desirable to reduce our screw radius, r, to an almost microscopic scale. However, this is not a practical solution, neither from a design nor manufacturing perspective. Although small screw diameters and high lead angles are desired from the perspective of weight and efficiency, they may not allow the designer to meet the strength demands of the physical system. Issues, such as axial yielding,compression buckling, and mechanism bind, need to be considered as well. Consider that a single ultrathin screw may be lightweight, although it may not be strong enough to carry the load required by the system. A single or several screws can be used, but must be sized large enough to handle the load placed upon it. As a note,there is no weight advantage to using several small screws to carry a large load, as the computation for both weight and stress are driven by a cross-sectional area of the screw. However, using several small screws to carry the load can allow the continued use of high lead angles and thus operate with high efficiencies, even in the presence of high loads. By pushing the limits of raw material properties of the lead screw, high axial loading can be achieved. This approach works better for a tensional system than it does for a compression bearing system. When considering the compressive loading of a long slender screw, Euler buckling must be addressed . Similar to that of the McKibben actuators or even human muscles, a lead screw actuator could be designed to bear a tensional load only, thus eliminating the consideration of buckling altogether. Creating a tension-only actuation system in a wearable robot does not necessarily mean that an antagonistic pair is required. In fact, for an assistance robot, a disabled person may only have muscle weakness in a single actuated direction and, therefore, a single tensional actuator would be all that is required to aid that person.。 For those designers who would push the limits of the screw radius and thus lead angle to beyond that of maximum efficiency, the presence of friction limits just how far the angle can be inclined. The physical interpretation of this is that the system willbind or lock. This can be seen by evaluating Eq.( 2) . An evaluation of the denominator in Eq.( 2) . yields the following relation。 (8) In addition to the practical considerations listed here, there exists many other issues that could be detailed. Examples of which may include torsional stiffness/yielding or even heat dissipation. Each of these factors are important and worthy of consideration, however, the purpose of this exercise is to demonstrate an alternative to the typical approaches of designing or selecting screw systems. The benefits of this alternative approach are directly applicable to the design issues of a wearable robotic system. 5 Example Problem To demonstrate a crude design exercise, consider the peak ankle joint torque during gait of an able-bodied or normal individual that weighs 80 kg and walks at 0.8 Hz stepping frequency. The peak ankle torque during gait is approximately 100 Nm. This peak occurs at roughly 45% of the gait cycle, A gait cycle is defined by the heel strike of a foot to the next heel strike of the same foot. Toe off is the point in which the weight of the individual has transferred to the opposite leg and the initiation of swing begins. The conclusion of the swing phase of gait places the foot back into a heel strike position again and then the next gait cycle can begin. As an example, let us consider building a lead screw actuator for ankle gait assistance. For our problem, let us assume the level Table 2: Example problem actuator comparison: Compares lead screw designs I and II to human muscle in terms of mechanical efficiency, power to weight ratio, corrected power to weight ratio and strength to weight ratio, measures of assistance to be at 30% and that the actuator acts with a 12 cm moment arm to the ankle joint. These values can be changed but, based upon personal experience, are reasonable in their scale. Using these values and parameters available for a chosen Maxon motor, the RE40, a range of lead lengths for this example solution has been determined; the range of possible screw leads are Example Problem Results. Two lead screw designs were generated to solve this problem. The first design, lead screw I, is a design solved for maximum efficiency. Assuming a lead of 2 mm and a =0.05, yields an efficiency of 0.9 for the screw at =43.5 and a radius of 0.34 mm. With such a small radius, multiple screws are needed to hold the load. Even so, estimates for the actuator power to weight are 280 W/kg. Power to weight has been determined by dividing the peak power required in our example by the weight of the motor and estimated transmission system. From our previous work, the weight of the accessory components was scaled proportionally to the reduced weight of the screw and nut. The second design, lead screw II, uses dimensions available from a commercial vendor. The screw is estimated to have an =13.6 and an efficiency of 0.82. Even with these larger dimensions, the actuators power to weight ratio of 277 W/kg =0.74 is expected. The results of this example problem have been tabulated for the purpose of comparison. Table 2 shows the numerical results of both example lead screw designs. These values are compared to the previous values tabulated for a dc motor alone, and the estimated values for human skeletal muscle. The strength to weight properties calculated for these examples is based upon the peak force required by our example. 6 Discussion In the analysis of the maximum efficiency solution, lead screw design I, it was shown that a single small radii screw will not always handle the loads required of it. However, a bundle of screws operating in parallel can perform that task with the same high efficiency. Although a 0.34 mm radius screw would not be easily manufactured using typical techniques, it is possible that this kind of approach i.e., use multiple screws to maintain high effi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 氫能制備新方法-洞察及研究
- 多模態(tài)情感識別技術:表情、語音與語言的綜合應用綜述
- 基于雙層路徑規(guī)劃的智能導盲系統(tǒng)設計與實現(xiàn)
- 檢查督導整改管理辦法
- 藝術生產(chǎn)理論在當代文藝創(chuàng)作中的實踐啟示研究
- 出具收入證明管理辦法
- 辦公樓保潔技術方案的研究與實踐
- 美學自學考試筆記重點解讀
- 游覽車運營調(diào)度方案設計
- 導電材料對厭氧消化性能的影響及其機制研究進展
- 新華書店讀者問卷調(diào)查表
- GB/T 20946-2007起重用短環(huán)鏈驗收總則
- GB/T 18391.3-2009信息技術元數(shù)據(jù)注冊系統(tǒng)(MDR)第3部分:注冊系統(tǒng)元模型與基本屬性
- GB/T 10610-2009產(chǎn)品幾何技術規(guī)范(GPS)表面結(jié)構輪廓法評定表面結(jié)構的規(guī)則和方法
- 熠搜家庭戶用光伏電站推介
- 濟源幼兒園等級及管理辦法
- 房地產(chǎn)開發(fā)全流程培訓講義課件
- DB44-T 2163-2019山地自行車賽場服務 基本要求-(高清現(xiàn)行)
- 云南省特種設備檢驗檢測收費標準
- DB15T 933-2015 內(nèi)蒙古地區(qū)極端高溫、低溫和降雨標準
- 工傷責任保險單
評論
0/150
提交評論