已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
外文原文: GEAR AND SHAFT INTRODUCTION Abstract: The important position of the wheel gear and shaft cant falter in traditional machine and modern machines. The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, useding for many situations respectively. So we must be the multilayers to the understanding of the wheel gear and shaft in many ways . Key words: Wheel gear; Shaft In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn. Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid. The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load. Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed heli cal gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand. Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears. Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle. When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered. Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often go 馬棚網(wǎng) od design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears. A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time. The word “shaft” covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle. When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress. Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability. Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two in 馬棚網(wǎng) ertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows: 1. Rim type with internally expanding shoes 2. Rim type with externally contracting shoes 3. Band type 4. Disk or axial type 5. Cone type 6. Miscellaneous type The analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary: 1. Assume or determine the distribution of pressure on the frictional surfaces. 2. Find a relation between the maximum pressure and the pressure at any point 3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions. Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others. A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements. Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required. Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal. An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This 馬棚網(wǎng) type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth. Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained. Introduction of Machining Have a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majority of the machining is not only supporting the workpiece also supporting tools and equipment to complete. Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and structure of the production batch sizes are suitable for the original casting, Forging or pressure processing to produce, but usually prefer machining. Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on the basis of. Many parts, if any other means of production belonging to the large-scale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing. Primary Cutting Parameters Cutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool. Cutting Tools must be of a suitable material to manufacture, it must be strong, tough, hard and wear-resistant. Tool geometry - to the tip plane and cutter angle characteristics - for each cutting process must be correct. Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts - with knives. Generally, the more hard work piece material, the lower the rate. Progressive Tool to speed is cut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。 Depth of penetration of a cutting tool - to inches dollars - is the tool to the work piece distance. Rotary cutting it to the chip or equal to the width of the linear cutting chip thickness. Rough than finishing, deeper penetration of a cutting tool depth. Wears of Cutting Tool We already have been processed and the rattle of the countless cracks edge tool, we learn that tool wear are basically three forms : flank wear, the former flank wear and V-Notch wear. Flank wear occurred in both the main blade occurred vice blade. On the main blade, shoulder removed because most metal chip mandate, which resulted in an increase cutting force and cutting temperature increase, If not allowed to check, That could lead to the work piece and the tool vibration and provide for efficient cutting conditions may no longer exist. Vice-bladed on, it is determined work piece dimensions and surface finish. Flank wear size of the possible failure of the product and surface finish are also inferior. In most actual cutting conditions, as the principal in the former first deputy flank before flank wear, wear arrival enough, Tool will be effective, the results are made unqualified parts. As Tool stress on the surface uneven, chip and flank before sliding contact zone between stress, in sliding contact the start of the largest, and in contact with the tail of zero, so abrasive wear in the region occurred. This is because the card cutting edge than the nearby settlements near the more serious wear, and bladed chip due to the vicinity of the former flank and lost contact wear lighter. This results from a certain distance from the cutting edge of the surface formed before the knife point Ma pit, which is usually considered before wear. Under normal circumstances, this is wear cross-sectional shape of an arc. In many instances and for the actual cutting conditions, the former flank wear compared to flank wear light, Therefore flank wear more generally as a tool failure of scale signs. But because many authors have said in the cutting speed of the increase, Maeto surface temperature than the knife surface temperatures have risen faster. but because any form of wear rate is essentially temperature changes by the significant impact. Therefore, the former usually wear in high-speed cutting happen. The main tool flank wear the tail is not processed with the work piece surface in contact, Therefore flank wear than wear along with the ends more visible, which is the most common. This is because the local effect, which is as rough on the surface has hardened layer, This effect is by cutting in front of the hardening of t he work piece. Not just cutting, and as oxidation skin, the blade local high temperature will also cause this effect. This partial wear normally referred to as pit sexual wear, but occasionally it is very serious. Despite the emergence of the pits on the Cutting Tool nature is not meaningful impact, but often pits gradually become darker If cutting continued the case, then there cutter fracture crisis. If any form of sexual allowed to wear, eventually wear rate increase obviously will be a tool to destroy failure destruction, that will no longer tool for cutting, cause the work piece scrapped, it is good, can cause serious damage machine. For various carbide cutting tools and for the various types of wear, in the event of a serious lapse, on the tool that has reached the end of the life cycle. But for various high-speed steel cutting tools and wear belonging to the non-uniformity of wear, has been found : When the wear and even to allow for a serious lapse, the most meaningful is that the tool can re-mill use, of course, In practice, cutting the time to use than the short time lapse. Several phenomena are one tool serious lapse began features : the most common is the sudden increase cutting force, appeared on the work piece burning ring patterns and an increase in noise. The Effect of Changes in Cutting Parameters on Cutting Temperatures In metal cutting operations heat is generated in the primary and secondary deformation zones and this results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip. Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and cutting temperatures will reduce. When considering increase in undeformed chip thickness and cutting speed the situation is more comples. An increase in undeformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed, however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip in primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate, it is appropriate to indicate how cutting temperatures can be assessed from cutting data. The most direct and accurate method for measuring temperatures in high-speed-steel cutting tools is that of Wright&Trent which also yields detailed information on temperature distributions in high-speed-steel tools which relates microstructural changes to thermal history. Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructural changes srising from over tempering of the tempered martensitic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed-steel single point turning tools and twist drills. Automatic Fixture Design Assembly equipment used in the traditional synchronous fixture put parts of the fixture mobile center, to ensure that components from transmission from the plane or equipment plate placed after removal has been scheduled for position. However, in certain applications, mobile mandatory parts of the center line, it may cause parts or equipment damage. When parts vulnerability and may lead to a small vibration abandoned, or when their location is by machine spindle or specific to die, Tolerance again or when the request is a sophisticated, it would rather let the fixture to adapt to the location of parts, and not the contrary. For these tasks, Elyria, Ohio, the company has developed Zaytran a general non-functional data synchronization West category FLEXIBILITY fixture. Fixture because of the interaction and synchronization devices is independent, The synchronous device can use sophisticated equipment to replace the slip without affecting the fixture force. Fixture specification range from 0.2 inches itinerary, 5 pounds clamping force of the six-inch trip, 400-inch clamping force. The characteristics of modern production is becoming smaller and smaller quantities and product specifications biggest changes. Therefore, in the final stages of production, assembly of production, quantity and product design changes appear to be particularly vulnerable. This situation is forcing many companies to make greater efforts to rationalize the extensive reform and the previously mentioned case of assembly automati on. Despite flexible fixture behind the rapid development of flexible transport and handling devices, such as backward in the development of industrial robots, it is still expected to increase the flexibility fixture. In fact the important fixture devices - the production of the devices to strengthen investment on the fixture so that more flexibility in economic support holders. According to their flexibility and fixture can be divided into : special fixture, the fixture combinations, the standard fixture, high flexible fixture. Flexible fixture on different parts of their high adaptability and the few low-cost replacement for the characteristic. Forms can transform the structure of the flexible fixture can be installed with the change of structure components (such as needle cheek plate, Multi-chip components and flake cheek plate), a non-standard work piece gripper or clamping elements (for example : commencement standard with a clamping fixture and mobile components fixture supporting documents), or with ceramic or hardening of the intermediary substances (such as : Mobile particle bed fixture and heat fixture tight fixture). To production, the parts were secured fixture, the need to generate clamping function, its fixture with a few unrelated to the sexual submissive steps : According to the processing was part of that foundation and working characteristics to determine the work piece fixture in the required position, then need to select some stability flat combination, These constitute a stable plane was fixed in the work piece fixture set position on the clamp-profile structure, all balanced and torque, it has also ensured that the work features close to the work piece. Finally, it must be calculated and adjusted, assembly or disassembly be standard fixture components required for the position, so that the work piece firmly by clamping fixture in China. In accordance with this procedure, the outline fixture structure and equipped with the planning and recording process can be automated control. Structural modeling task is to produce some stable flat combination, Thus, these plane of the work pieces clamping force and will fixture stability. According to usual practice, this task can be human-machine dialogue that is almost completely automated way to completion. A man-machine dialogue that is automated fixture structure modeling to determine the merits can be conducted in an organized and planning fixture design, reduce the amount of the design, shortening the study period and better distribution of work conditions. In short, can be successfully achieved significantly improve fixture efficiency and effectiveness. Fully prepared to structure programs and the number of material circumstances, the completion of the first successful assembly can save up to 60% of the time. Therefore fixture process modeling agencies is the purpose of the program have appropriate documents. 譯文: 齒輪和軸的介紹 摘 要 :在傳統(tǒng)機(jī)械和現(xiàn)代機(jī)械中齒輪和軸的重要地位是不可動搖的。齒輪和軸主要安裝在主軸箱來傳遞力的方向。通過加工制造它們可以分為許多的型號,分別用于許多的場合。所以我們對齒輪和軸的了解和認(rèn)識必須是多層次多方位的。 關(guān)鍵詞 :齒輪;軸 在直齒圓柱齒輪的受力分析中,是假定各力作用在單一平面的。我們將研究作用力具有三維坐標(biāo)的齒輪。因此,在斜齒輪的情況下,其齒向是不平行于回轉(zhuǎn)軸線的。而在錐齒輪的情況中各回轉(zhuǎn)軸線互相不平行。像我們要討論的 那樣,尚有其他道理需要學(xué)習(xí),掌握。 斜齒輪用于傳遞平行軸之間的運動。傾斜角度每個齒輪都一樣,但一個必須右旋斜齒,而另一個必須是左旋斜齒。齒的形狀是一濺開線螺旋面。如果一張被剪成平行四邊形(矩形)的紙張包圍在齒輪圓柱體上,紙上印出齒的角刃邊就變成斜線。如果我展開這張紙,在血角刃邊上的每一個點就發(fā)生一漸開線曲線。 直齒圓柱齒輪輪齒的初始接觸處是跨過整個齒面而伸展開來的線。斜齒輪輪齒的初始接觸是一點,當(dāng)齒進(jìn)入更多的嚙合時,它就變成線。在直齒圓柱齒輪中,接觸是平行于回轉(zhuǎn)軸線的。在斜齒輪中,該先是跨過齒面的對角線。它 是齒輪逐漸進(jìn)行嚙合并平穩(wěn)的從一個齒到另一個齒傳遞運動,那樣就使斜齒輪具有高速重載下平穩(wěn)傳遞運動的能力。斜齒輪使軸的軸承承受徑向和軸向力。當(dāng)軸向推力變的大了或由于別的原因而產(chǎn)生某些影響時,那就可以使用人字齒輪。雙斜齒輪(人字齒輪)是與反向的并排地裝在同一軸上的兩個斜齒輪等效。他們產(chǎn)生相反的軸向推力作用,這樣就消除了軸向推力。當(dāng)兩個或更多個單向齒斜齒輪被在同一軸上時,齒輪的齒向應(yīng)作選擇,以便產(chǎn)生最小的軸向推力。 交錯軸斜齒輪或螺旋齒輪,他們是軸中心線既不相交也不平行。交錯軸斜齒輪的齒彼此之間發(fā)生點接觸,它隨著齒 輪的磨合而變成線接觸。因此他們只能傳遞小的載荷和主要用于儀器設(shè)備中,而且肯定不能推薦在動力傳動中使用。交錯軸斜齒輪與斜齒輪之間在被安裝后互相捏合之前是沒有任何區(qū)別的。它們是以同樣的方法進(jìn)行制造。一對相嚙合的交錯軸斜齒輪通常具有同樣的齒向,即左旋主動齒輪跟右旋從動齒輪相嚙合。在交錯軸斜齒設(shè)計中,當(dāng)該齒的斜角相等時所產(chǎn)生滑移速度最小。然而當(dāng)該齒的斜角不相等時,如果兩個齒輪具有相同齒向的話,大斜角齒輪應(yīng)用作主動齒輪。 蝸輪與交錯軸斜齒輪相似。小齒輪即蝸桿具有較小的齒數(shù),通常是一到四齒,由于它們完全纏繞在節(jié)圓柱上, 因此它們被稱為螺紋齒。與其相配的齒輪叫做蝸輪,蝸輪不是真正的斜齒輪。蝸桿和蝸輪通常是用于向垂直相交軸之間的傳動提供大的角速度減速比。蝸輪不是斜齒輪,因為其齒頂面做成中凹形狀以適配蝸桿曲率,目的是要形成線接觸而不是點接觸。然而蝸桿蝸輪傳動機(jī)構(gòu)中 馬棚網(wǎng) 存在齒間有較大滑移速度的缺點,正像交錯軸斜齒輪那樣。 蝸桿蝸輪機(jī)構(gòu)有單包圍和雙包圍機(jī)構(gòu)。單包圍機(jī)構(gòu)就是蝸輪包裹著蝸桿的一種機(jī)構(gòu)。當(dāng)然,如果每個構(gòu)件各自局部地包圍著對方的蝸輪機(jī)構(gòu)就是雙包圍蝸輪蝸桿機(jī)構(gòu)。著兩者之間的重要區(qū)別是,在雙包 圍蝸輪組的輪齒間有面接觸,而在單包圍的蝸輪組的輪齒間有線接觸。一個裝置中的蝸桿和蝸輪正像交錯軸斜齒輪那樣具有相同的齒向,但是其斜齒齒角的角度是極不相同的。蝸桿上的齒斜角度通常很大,而蝸輪上的則極小,因此習(xí)慣常規(guī)定蝸桿的導(dǎo)角,那就是蝸桿齒斜角的余角;也規(guī)定了蝸輪上的齒斜角,該兩角之和就等于 90 度的軸線交角。 當(dāng)齒輪要用來傳遞相交軸之間的運動時,就需要某種形式的錐齒輪。雖然錐齒輪通常制造成能構(gòu)成 90 度軸交角,但它們也可產(chǎn)生任何角度的軸交角。輪齒可以鑄出,銑制或滾切加工。僅就滾齒而言就可達(dá)一級精度。在典型的錐齒輪 安裝中,其中一個錐齒輪常常裝于支承的外側(cè)。這意味著軸的撓曲情況更加明顯而使在輪齒接觸上具有更大的影響。 另外一個難題,發(fā)生在難于預(yù)示錐齒輪輪齒上的應(yīng)力,實際上是由于齒輪被加工成錐狀造成的。 直齒錐齒輪易于設(shè)計且制造簡單,如果他們安裝的精密而確定,在運轉(zhuǎn)中會產(chǎn)生良好效果。然而在直齒圓柱齒輪情況下,在節(jié)線速度較高時,他們將發(fā)出噪音。在這些情況下,螺旋錐齒輪比直齒輪能產(chǎn)生平穩(wěn)的多的嚙合作用,因此碰到高速運轉(zhuǎn)的場合那是很有用的。當(dāng)在汽車的各種不同用途中,有一個帶偏心軸的類似錐齒輪的機(jī)構(gòu),那是常常所希望的。這樣的齒輪 機(jī)構(gòu)叫做準(zhǔn)雙曲面齒輪機(jī)構(gòu),因為它們的節(jié)面是雙曲回轉(zhuǎn)面。這種齒輪之間的輪齒作用是沿著一根直線上產(chǎn)生滾動與滑動相結(jié)合的運動并和蝸輪蝸桿的輪齒作用有著更多的共同之處。 軸是一種轉(zhuǎn)動或靜止的桿件。通常有圓形橫截面。在軸上安裝像齒輪,皮帶輪,飛輪,曲柄,鏈輪和其他動力傳遞零件。軸能夠承受彎曲,拉伸,壓縮或扭轉(zhuǎn)載荷,這些力相結(jié)合時,人們期望找到靜強(qiáng)度和疲勞強(qiáng)度作為設(shè)計的重要依據(jù)。因為單根軸可以承受靜壓力,變應(yīng)力和交變應(yīng)力,所有的應(yīng)力作用都是同時發(fā)生的。 “ 軸 ” 這個詞包含著多種含義,例如心軸和主軸。心軸也是軸,既可以旋轉(zhuǎn) 也可以靜止的軸,但不承受扭轉(zhuǎn)載荷。短的轉(zhuǎn)動軸常常被稱為主軸。 當(dāng)軸的彎曲或扭轉(zhuǎn)變形必需被限制于很小的范圍內(nèi)時,其尺寸應(yīng)根據(jù)變形來確定,然后進(jìn)行應(yīng)力分析。因此,如若軸要做得有足夠的剛度以致?lián)锨惶?,那么合?yīng)力符合安全要求那是完全可能的。但決不意味著設(shè)計者要保證;它們是安全的,軸幾乎總是要進(jìn)行計算的,知道它們是處在可以接受的允許的極限以內(nèi)。因之,設(shè)計者無論何時,動力傳遞零件,如齒輪或皮帶輪都應(yīng)該設(shè)置在靠近支持軸承附近。這就減低了彎矩,因而減小變形和彎曲應(yīng)力。 雖然來自 M.H.G 方法在設(shè)計軸中難于應(yīng)用,但它可能 用來準(zhǔn)確預(yù)示實際失效。這樣,它是一個檢驗已經(jīng)設(shè)計好了的軸的或者發(fā)現(xiàn)具體軸在運轉(zhuǎn)中發(fā)生損壞原因的好方法。進(jìn)而有著大量的關(guān)于設(shè)計的問題,其中由于別的考慮例如剛度考慮,尺寸已得到較好的限制。 設(shè)計者去查找關(guān)于圓角尺寸、熱處理、表面光潔度和是否要進(jìn)行噴丸處理等資料,那真正的唯一的需要是實現(xiàn)所要求的壽命和可靠性。 由于他們的功能相似,將離合器和制動器一起處理。簡化摩擦離合器或制動器的動力學(xué)表達(dá)式中,各自以角速度 w1 和 w2 運動的兩個轉(zhuǎn)動慣量 I1 和 I2,在制動器情況下其中之一可能是零,由于接上離合器或制動器而最終要導(dǎo)致同 樣的速度。因為兩個構(gòu)件開始以不同速度運轉(zhuǎn)而使打滑發(fā)生了,并且在作用過程中能量散失,結(jié)果導(dǎo)致溫升。在分析這些裝置的性能時,我們應(yīng)注意到作用力,傳遞的扭矩,散失的能量和溫升。所傳遞的扭矩關(guān)系到作用力,摩擦系數(shù)和離 馬棚網(wǎng) 合器或制動器的幾何狀況。這是一個靜力學(xué)問題。這個問題將必須對每個幾何機(jī)構(gòu)形狀分別進(jìn)行研究。然而溫升與能量損失有關(guān),研究溫升可能與制動器或離合器的類型無關(guān)。因為幾何形狀的重要性是散熱表面。各種各樣的離合器和制動器可作如下分類: 1輪緣式內(nèi)膨脹制凍塊; 2輪緣式外 接觸制動塊; 3條帶式; 4盤型或軸向式; 5圓錐型; 6混合式。 分析摩擦離合器和制動器的各種形式都應(yīng)用一般的同樣的程序,下面的步驟是必需的: 1假定或確定摩擦表面上壓力分布; 2找出最大壓力和任一點處壓力之間的關(guān)系; 3應(yīng)用靜平衡條件去找尋( a)作用力;( b)扭矩; (c)支反力。 混合式離合器包括幾個類型,例如強(qiáng)制接觸離合器、超載釋放保護(hù)離合器、超越離合器、磁液離合器等等。 強(qiáng)制接觸離合器由一個變位桿和兩個夾爪組成。各種強(qiáng)制接觸離合器之間最大的區(qū)別與夾爪的設(shè)計有關(guān)。為了在結(jié)合過程中給變換作用予較長時間周期,夾爪可以是棘輪式的,螺旋型或齒型的。有時使用許多齒或夾爪。他們可能在圓周面上加工齒,以便他們以圓柱周向配合來結(jié)合或者在配合元件的端面上加工齒來結(jié)合。 雖然強(qiáng)制離合器不像摩擦接觸離合器用的那么廣泛,但它們確實有很重要的運用。離合器需要同步操作。 有些裝置例如線性驅(qū)動裝置或電機(jī)操作螺桿驅(qū)動器必須運行到一定的限度然后停頓下來。為著這些用途就需要超載釋放保護(hù)離合器。這些離合器通常用彈 簧加載,以使得在達(dá)到預(yù)定的力矩時釋放。當(dāng)?shù)竭_(dá)超載點時聽到的 “ 喀嚓 ” 聲就被認(rèn)定為是所希望的信號聲。 超越離合器或連軸器允許機(jī)器的被動構(gòu)件 “ 空轉(zhuǎn) ” 或 “ 超越 ” ,因為主動驅(qū)動件停頓了或者因為另一個動力源使被動構(gòu)件增加了速度。這種離合器通常使用裝在外套筒和內(nèi)軸件之間的滾子或滾珠。該內(nèi)軸件,在它的周邊加工了數(shù)個平面。驅(qū)動作用是靠在套筒和平面之間契入的滾子來獲得。因此該離合器與具有一定數(shù)量齒的棘輪棘爪機(jī)構(gòu)等效。 磁液離合器或制動器相對來說是一個新的發(fā)展,它們具有兩平行的磁極板。這些磁極板之間有磁粉混合物潤滑。電磁線圈被裝 入磁路中的某處。借助激勵該線圈,磁液混合物的剪切強(qiáng)度可被精確的控制。這樣從充分滑移到完全鎖住的任何狀態(tài)都可以獲得。 加工基礎(chǔ) 作為產(chǎn)生形狀的一種加工方法,機(jī)械加 馬棚網(wǎng) 工是所有制造過程中最普遍使用的而且是最重要的方法。機(jī)械加工過程是一個產(chǎn)生形狀的過程,在這過程中,驅(qū)動裝置使工件上的一些材料以切屑的形式被去除。盡管在某些場合,工件無承受情況下,使用移動式裝備來實現(xiàn)加工,但大多數(shù)的機(jī)械加工是通過既支承工件又支承刀具的裝備來完成。 機(jī)械加工在知道過程中具備兩方面。小批生產(chǎn)低費用。 對于鑄造、鍛造和壓力加工,每一個要生產(chǎn)的具體工件形狀,即使是一個零件,幾乎都要花費高額的加工費用??亢附觼懋a(chǎn)生的結(jié)構(gòu)形狀,在很大程度上取決于有效的原材料的形式。一般來說,通過利用貴重設(shè)備而又無需特種加工條件下,幾乎可以以任何種類原材料開始,借助機(jī)械加工把原材料加工成任意所需要的結(jié)構(gòu)形狀,只要外部尺寸足夠大,那都是可能的。因此對于生產(chǎn)一個零件,甚至當(dāng)零件結(jié)構(gòu)及要生產(chǎn)的批量大小上按原來都適于用鑄造、鍛造或者壓力加工來生產(chǎn)的,但通常寧可選擇機(jī)械加工。 嚴(yán)密的精度和良好的表面光潔度,機(jī)械加工的第二方面用途是建立在高 精度和可能的表面光潔度基礎(chǔ)上。許多零件,如果用別的其他方法來生產(chǎn)屬于大批量生產(chǎn)的話,那么在機(jī)械加工中則是屬于低公差且又能滿足要求的小批量生產(chǎn)了。另方面,許多零件靠較粗的生產(chǎn)加工工藝提高其一般表面形狀,而僅僅是在需要高精度的且選擇過的表面才進(jìn)行機(jī)械加工。例如內(nèi)螺紋,除了機(jī)械加工之外,幾乎沒有別的加工方法能進(jìn)行加工。又如已鍛工件上的小孔加工,也是被鍛后緊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度環(huán)保型PHC管樁生產(chǎn)與施工一體化合同2篇
- 二零二五版汽車售后服務(wù)合同協(xié)議2篇
- 二零二五版醫(yī)療器械樣品采購及臨床試驗合同3篇
- 二零二五年度特種玻璃進(jìn)出口貿(mào)易合同樣本2篇
- 基于云計算的醫(yī)療信息平臺建設(shè)合同(2025年度)3篇
- 二零二五版CNG車輛進(jìn)出口貿(mào)易合同2篇
- 二零二五年度豪華郵輪船員聘用及綜合服務(wù)合同3篇
- 二零二五版家庭護(hù)理服務(wù)與保險產(chǎn)品對接合同2篇
- 二零二五年電子商務(wù)產(chǎn)業(yè)園杭州電子商務(wù)法律風(fēng)險防范合同3篇
- 二零二五年防水材料研發(fā)與市場拓展合同3篇
- GB/T 18476-2001流體輸送用聚烯烴管材耐裂紋擴(kuò)展的測定切口管材裂紋慢速增長的試驗方法(切口試驗)
- GA 1551.5-2019石油石化系統(tǒng)治安反恐防范要求第5部分:運輸企業(yè)
- 拘留所教育課件02
- 沖壓生產(chǎn)的品質(zhì)保障
- 《腎臟的結(jié)構(gòu)和功能》課件
- 2023年湖南聯(lián)通校園招聘筆試題庫及答案解析
- 上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析
- 護(hù)士事業(yè)單位工作人員年度考核登記表
- 天津市新版就業(yè)、勞動合同登記名冊
- 產(chǎn)科操作技術(shù)規(guī)范范本
- 人教版八年級上冊地理全冊單元測試卷(含期中期末試卷及答案)
評論
0/150
提交評論