地方本科院校大學(xué)代數(shù)系列課程教學(xué)的幾點(diǎn)體會(huì).docx_第1頁(yè)
地方本科院校大學(xué)代數(shù)系列課程教學(xué)的幾點(diǎn)體會(huì).docx_第2頁(yè)
地方本科院校大學(xué)代數(shù)系列課程教學(xué)的幾點(diǎn)體會(huì).docx_第3頁(yè)
地方本科院校大學(xué)代數(shù)系列課程教學(xué)的幾點(diǎn)體會(huì).docx_第4頁(yè)
地方本科院校大學(xué)代數(shù)系列課程教學(xué)的幾點(diǎn)體會(huì).docx_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、引言大學(xué)代數(shù)課程主要包括數(shù)學(xué)專業(yè)的高等代數(shù)、近世代數(shù)課程及公共課線性代數(shù).這三門課程都具有高度的抽象化和形式化的特征,是被學(xué)生公認(rèn)為比較難學(xué)又極其重要而基礎(chǔ)的專業(yè)課程.從大學(xué)代數(shù)課程的教學(xué)研究和實(shí)踐出發(fā),對(duì)其教學(xué)內(nèi)容、教材建設(shè)、教學(xué)手段等方面進(jìn)行有效的改革,從而提高教學(xué)質(zhì)量,同時(shí)培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì)與創(chuàng)新能力,使得學(xué)生從“知識(shí)教育”向“能力教育”逐漸轉(zhuǎn)變,這便是我們對(duì)代數(shù)課程進(jìn)行相關(guān)探索和研究的主要目標(biāo).如何結(jié)合地方院校自身的特點(diǎn),讓學(xué)生更容易、更有效率地學(xué)好這幾門專業(yè)課程,并讓學(xué)生盡量利用所學(xué)的代數(shù)思想方法應(yīng)用于實(shí)踐,從而培養(yǎng)他們形成解決實(shí)際問(wèn)題的能力,這便是我們進(jìn)行相關(guān)探索和研究的重要內(nèi)容.目前,已有不少文獻(xiàn)探討了高等代數(shù)近世代數(shù)或線性代數(shù)課程的一些教學(xué)實(shí)施與體會(huì),如可參看文獻(xiàn)1-4等.本文作者將結(jié)合自身在廣東省精品資源共享課程高等代數(shù)近世代數(shù)及線性代數(shù)這三門大學(xué)代數(shù)課程的教學(xué)研究及實(shí)踐的基礎(chǔ)上給出一些教學(xué)體會(huì).二、大學(xué)代數(shù)課程教學(xué)的幾點(diǎn)嘗試與實(shí)踐(一)始終不渝地把握四個(gè)教學(xué)原則1.體現(xiàn)大學(xué)代數(shù)學(xué)的典型思想方法的原則培養(yǎng)學(xué)生系統(tǒng)地掌握代數(shù)研究問(wèn)題的基本方法是代數(shù)課的教學(xué)目的之一.代數(shù)中有代表性的典型思想方法包括:公理化演繹的思想(如:向量空間、歐式空間等各類代數(shù)系統(tǒng)),分類的思想(如:矩陣的相似、合同、等價(jià)等等各種等價(jià)關(guān)系),相互關(guān)聯(lián)的思想(如:同態(tài)、同構(gòu)等各種形式的映射),矩陣的方法,初等變換的方法,抽象推理的方法等等.了解這些思想方法的具體含義和在代數(shù)中的具體應(yīng)用對(duì)代數(shù)課程教學(xué)是十分有益的.文獻(xiàn)1,4也結(jié)合高等代數(shù)課程的教學(xué)體會(huì),詳細(xì)地探究了嚴(yán)格的邏輯推理方法,公理化方法,結(jié)構(gòu)化方法,矩陣表示方法和等價(jià)分類方法等在教學(xué)中有效實(shí)施.2.體現(xiàn)與時(shí)俱進(jìn)的原則參考國(guó)內(nèi)外最新的教材內(nèi)容,結(jié)合我們的教研、科研,把課程的前沿知識(shí)、研究現(xiàn)狀和發(fā)展趨勢(shì),及時(shí)貫徹到教學(xué)過(guò)程中,常講常新.例如,我們可以在教學(xué)過(guò)程中把代數(shù)學(xué)家的一些故事、代數(shù)學(xué)界最近的研究現(xiàn)狀及所發(fā)生的一些事情帶入到課堂,介紹給學(xué)生,以此激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣與熱情.3.體現(xiàn)現(xiàn)代教育理念的原則適當(dāng)安排一些探索性內(nèi)容,擴(kuò)展性內(nèi)容,構(gòu)建終身學(xué)習(xí)所需要的代數(shù)學(xué)的基礎(chǔ).將現(xiàn)代化手段在數(shù)學(xué)課程教學(xué)中的應(yīng)用將全面鋪開(kāi);從教學(xué)內(nèi)容的組織與安排看,課堂教學(xué)與課外延伸相結(jié)合,將知識(shí)傳授、能力培養(yǎng)、素質(zhì)教育融為一體,采用各種形象化的教學(xué)手段,使用投影儀和計(jì)算機(jī)輔助教學(xué),增加教學(xué)的直觀性,化解數(shù)學(xué)的抽象和難點(diǎn),促進(jìn)教學(xué)質(zhì)量的提高.4.突出師范教育的特點(diǎn)惠州學(xué)院的數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)是師范專業(yè),而高師數(shù)學(xué)專業(yè)培養(yǎng)的目標(biāo)是中小學(xué)數(shù)學(xué)教師,我們努力在高等代數(shù)與近世代數(shù)課程的教學(xué)之中滲透教育學(xué)和數(shù)學(xué)課程教學(xué)論的思想,注重研究代數(shù)學(xué)課程對(duì)中學(xué)數(shù)學(xué)教學(xué)的指導(dǎo),充分體現(xiàn)數(shù)學(xué)文化和數(shù)學(xué)美,培養(yǎng)學(xué)生的數(shù)學(xué)文化素養(yǎng)和未來(lái)數(shù)學(xué)教師的綜合素質(zhì),適應(yīng)基礎(chǔ)教育教學(xué)和改革的需要.(二)不斷嘗試各種教學(xué)理念和方法1.采用“本原教學(xué)法”進(jìn)行教學(xué)高度的抽象化和形式化是代數(shù)學(xué)的基本特征,高等代數(shù)、近世代數(shù)及線性代數(shù)這三門大學(xué)代數(shù)課程是被學(xué)生公認(rèn)為比較難學(xué)的數(shù)學(xué)課程.所謂“本原教學(xué)法”,就是教學(xué)中要返璞歸真,從源頭講起,講清楚問(wèn)題產(chǎn)生和發(fā)展的過(guò)程,先講明道理,水到渠成,讓學(xué)生自己歸納定義或結(jié)論,再講推理,然后再抽象化和形式化.例如,在引入同構(gòu)概念之前,我們可以先讓學(xué)生回憶三角形全等的概念和判定方法.ABC與三角形ABC的全等實(shí)際上是建立兩個(gè)三角形的頂點(diǎn)和邊的一一對(duì)應(yīng).點(diǎn)的對(duì)應(yīng)可以看成兩個(gè)集合S和T的元素的一一對(duì)應(yīng),即AA,邊可以看成兩個(gè)點(diǎn)所作用的結(jié)果,從而S和T的邊的對(duì)應(yīng)可以是看成保持它們兩個(gè)點(diǎn)的運(yùn)算結(jié)果.這樣一來(lái),兩個(gè)代數(shù)系統(tǒng)的同構(gòu)其實(shí)就是這兩個(gè)代數(shù)系統(tǒng)間可以建立一個(gè)一一映射,并且該映射保持這兩個(gè)代數(shù)系統(tǒng)的所有運(yùn)算.再例如在引入向量的線性相關(guān)的概念時(shí),我們先從“平面向量的共線”及“空間向量的共面”入手,介紹一些具體的、學(xué)生熟悉的例子,最后歸納出線性相關(guān)的一般定義.教學(xué)實(shí)踐證明,這種教學(xué)方法學(xué)生易于接受,效果明顯.2.采用“研究性教學(xué)法”進(jìn)行教學(xué)在自身開(kāi)展科研的同時(shí),我們經(jīng)常將所授課程的前沿知識(shí),研究現(xiàn)狀和發(fā)展趨勢(shì)融入到教學(xué)過(guò)程中,將自己的研究實(shí)踐經(jīng)驗(yàn)、思維創(chuàng)新方法、學(xué)科前沿動(dòng)態(tài)介紹給學(xué)生,并適時(shí)適度提出一些問(wèn)題供學(xué)生研究.例如我們?cè)诟叩却鷶?shù)或線性代數(shù)課程教學(xué)中,可以提出如下問(wèn)題給學(xué)生探究:矩陣表示方法的綜合體現(xiàn)、等價(jià)分類方法的滲透與應(yīng)用、同構(gòu)思想的應(yīng)用、分析學(xué)思想在代數(shù)學(xué)中應(yīng)用等等.此外,我們也偶爾可以不從定義出發(fā)而從問(wèn)題出發(fā)來(lái)組織和展開(kāi)本課程的教學(xué)內(nèi)容和體系,即從重要的問(wèn)題出發(fā),根據(jù)需要引入概念,并總結(jié)出定理,引導(dǎo)學(xué)生去探索和發(fā)現(xiàn)知識(shí),從而培養(yǎng)學(xué)生的創(chuàng)新思維.這一教學(xué)過(guò)程的主體是學(xué)生,主導(dǎo)是教師.3.利用類比法進(jìn)行各代數(shù)系統(tǒng)相關(guān)內(nèi)容的教學(xué)類比法是數(shù)學(xué)發(fā)現(xiàn)中最常用、最有效的方法之一,它在科學(xué)發(fā)展史上起過(guò)重大作用.法國(guó)數(shù)學(xué)家拉普拉斯指出:甚至在數(shù)學(xué)里,發(fā)現(xiàn)真理的工具是歸納和類比,這也足以看出類比方法的重要性.類比是通過(guò)兩類不同對(duì)象A,B間的某些屬性的相似,從而從A具有某種其他屬性便猜想B也有這種屬性. 本科階段主要接觸的代數(shù)系統(tǒng)有向量空間、歐式空間、群、環(huán)和域等.由于這些代數(shù)系統(tǒng)之間具有一些屬性的相似,即都是一些帶有運(yùn)算的集合,這即表明類比的數(shù)學(xué)思想方法可嘗試在這些代數(shù)課程的學(xué)習(xí)或教學(xué)中去運(yùn)用.例如,我們?cè)谥v授高等代數(shù)或線性代數(shù)時(shí),可以利用類比法來(lái)講解向量空間與歐式空間、矩陣與線性變換的定義與性質(zhì)、聯(lián)系與區(qū)別等等.又例如,我們?cè)谥v授近世代數(shù)時(shí),可利用類比法來(lái)講解群環(huán)域等代數(shù)系統(tǒng)及其子系統(tǒng)的概念,講解代數(shù)系統(tǒng)的同態(tài)基本定理,講解一些特殊環(huán)(整環(huán)、除環(huán)與域)之間關(guān)系,講解一些特殊整環(huán)(唯一分解環(huán)、主理想環(huán)、歐氏環(huán)等)的關(guān)系等等.教學(xué)實(shí)踐證明,該方法教學(xué)效果明顯,而且可以培養(yǎng)學(xué)生如何發(fā)現(xiàn)新問(wèn)題的科研興趣和能力.4.課堂精講、返講與自學(xué)相結(jié)合我們?cè)诖鷶?shù)系列課程的教學(xué)中,努力做到課堂精講、返講與自學(xué)相結(jié)合.課堂上,講重點(diǎn),講知識(shí)的背景與形成過(guò)程,揭示知識(shí)的內(nèi)在聯(lián)系;對(duì)難點(diǎn)、重點(diǎn)內(nèi)容進(jìn)行返講,使學(xué)生深刻理解抽象的理論,從怕學(xué)到愛(ài)學(xué);自學(xué)是指有些教材內(nèi)容則采用學(xué)生自學(xué)為主,教師給出思考題,課后下班輔導(dǎo)及答疑.我們采取了一系列措施指導(dǎo)學(xué)生自主學(xué)習(xí),主要做法是針對(duì)不同專業(yè)的學(xué)生建立不同層次的試卷庫(kù),建立自測(cè)卷,同時(shí),統(tǒng)一考試標(biāo)準(zhǔn)及要求,保證其公正、公平.5.以科技創(chuàng)新活動(dòng)為突破口,激勵(lì)學(xué)生研究性學(xué)習(xí)(1)開(kāi)發(fā)第二課堂通過(guò)講座,介紹代數(shù)發(fā)展歷史上的典型人物、典型事件、典型的思想方法,代數(shù)與相關(guān)學(xué)科的聯(lián)系、應(yīng)用前景,提高學(xué)習(xí)代數(shù)學(xué)的興趣.指導(dǎo)學(xué)生去發(fā)現(xiàn)實(shí)踐中的數(shù)學(xué)問(wèn)題,指導(dǎo)學(xué)生使用Matlab分析和解決問(wèn)題;指導(dǎo)學(xué)生自主式學(xué)習(xí)、探究式學(xué)習(xí),給他們布置一些難度不是很大的研究性問(wèn)題,讓他們課外去找資料解決,并用規(guī)范論文的格式打印出來(lái).這樣,一方面,我們可以讓所有學(xué)生學(xué)會(huì)如何撰寫(xiě)數(shù)學(xué)專業(yè)論文,另一方面,我們也可以讓一部分寫(xiě)得比較好的學(xué)生的論文拿去發(fā)表,從而達(dá)到一舉雙得的效果.此外,我們也提倡學(xué)生在數(shù)學(xué)的認(rèn)識(shí)與實(shí)踐、數(shù)學(xué)教育學(xué)報(bào)、大學(xué)數(shù)學(xué)、高等數(shù)學(xué)研究、數(shù)學(xué)通報(bào)、中學(xué)數(shù)學(xué)研究等一些專業(yè)涉及知識(shí)不深的期刊中找適合自己的文章閱讀、報(bào)告和探討.(2)以學(xué)科競(jìng)賽為平臺(tái),提高學(xué)生協(xié)同創(chuàng)新能力我們的具體做法有:以全國(guó)和國(guó)際數(shù)學(xué)建模競(jìng)賽為平臺(tái),培養(yǎng)學(xué)生的解決實(shí)際問(wèn)題的創(chuàng)新能力;以全國(guó)普通高校信息技術(shù)創(chuàng)新活動(dòng)為載體,培養(yǎng)學(xué)生信息技術(shù)創(chuàng)新能力.數(shù)學(xué)建模對(duì)激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性、提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問(wèn)題的綜合能力、推動(dòng)大學(xué)數(shù)學(xué)教學(xué)內(nèi)容和方法的改革等方面均有重要意義.通過(guò)“一年兩賽”模式參加國(guó)內(nèi)和國(guó)際數(shù)學(xué)建模學(xué)科競(jìng)賽,努力提高學(xué)生的應(yīng)用能力與創(chuàng)新能力,提倡“以賽促教,以教育賽”,并將建模融入日常教學(xué)中;以數(shù)學(xué)建模競(jìng)賽為切入點(diǎn),努力培養(yǎng)學(xué)生的創(chuàng)新能力.(3)指導(dǎo)學(xué)生申報(bào)各類大學(xué)生科技創(chuàng)新項(xiàng)目,培養(yǎng)學(xué)生研究性學(xué)習(xí)的能力在教師的指導(dǎo)下制定研究課題,鼓勵(lì)學(xué)生自主申報(bào)并研究國(guó)家級(jí)、省級(jí)、校級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目、暑寒期社會(huì)實(shí)踐項(xiàng)目等各項(xiàng)課題,鼓勵(lì)學(xué)生踴躍向國(guó)內(nèi)外專業(yè)期刊投稿,以此來(lái)增強(qiáng)學(xué)生的科學(xué)研究及寫(xiě)作能力.(4)鼓勵(lì)學(xué)生參加教師的課題,提高學(xué)生以及教師的科研創(chuàng)新能力教師是培養(yǎng)大學(xué)生科技創(chuàng)新能力的關(guān)鍵因素之一,倡導(dǎo)教師將學(xué)生納入自身的科研工作之中,根據(jù)學(xué)生的知識(shí)階段,指導(dǎo)學(xué)生完成力所能及的研究工作,努力提高學(xué)生的科研創(chuàng)新能力.三、結(jié)束語(yǔ)本文就高等代數(shù)近世代數(shù)及線性代數(shù)這三門大學(xué)代數(shù)課程的教學(xué)原則、教學(xué)理念、教學(xué)方法、教學(xué)研究及實(shí)踐等方面,給出了一些教學(xué)思考與體會(huì).旨在強(qiáng)調(diào)探索和改進(jìn)傳統(tǒng)的教學(xué)模式,不斷滲透數(shù)學(xué)思想和方法,對(duì)提高教學(xué)質(zhì)量,培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)思維能力具有非常重要的意義.因此,我們今后需不斷地對(duì)大學(xué)代數(shù)課程課堂的教學(xué)內(nèi)容、模式和方法進(jìn)行有效改革,使得學(xué)生既感興趣地學(xué)到必要的數(shù)學(xué)知識(shí)和數(shù)學(xué)技能,又掌握了其中的數(shù)學(xué)思想和方法,好為他們將來(lái)更好地從事數(shù)學(xué)方面的相關(guān)工作打下良好的基礎(chǔ).One, the introductionWith specialized mathematics of the university algebra course mainly includes the advanced algebra, modern algebra course and general course linear algebra. The three courses are highly abstract and formalized characteristics, is recognized by students to compare the difficult and extremely important and basic professional course. Starting from the teaching research and practice of college algebra course, the teaching content, teaching means, teaching material construction for effective reform, so as to improve the teaching quality, cultivate the students mathematics quality and innovation ability at the same time, make the students from the knowledge education to capability education gradually shift, this is our related exploration and research of algebra course. How to combine the characteristics of local colleges and universities themselves, let the student much easier and more efficient to learn the professional course, and let the students try to use what they have learned algebra thought method is applied to the practice, so as to cultivate their ability to solve practical problem formation, this is the important content of related exploration and research.At present, there have been many literatures discussed the advanced algebra modern algebra or linear algebra courses teaching and experience, such as 1-4 can see literature. In this paper, the author will combine their own fine sharing resources in guangdong province advanced algebra modern algebra and the three college algebra course linear algebra teaching research and practice on the basis of given some teaching experience.Second, college algebra course teaching of try and practice(a) unswervingly hold four teaching principles1. Typical ideology that embodies the college algebra method principleTo cultivate students to systematically master the basic method of algebra research problem is one of the teaching purpose of algebra class. Representative typical thought in algebra method includes: axiomatic deductive thinking (such as vector space, European space and other kinds of algebraic system), the classification of ideas (such as: similar matrix, contracts, equivalence and so on all sorts of equivalence relation), interrelated ideas (e.g. homomorphism and isomorphism, etc all kinds of mapping), the matrix method, the method of elementary transformation, abstract reasoning method, and so on. Understand the specific meaning of these thought methods and in the application of algebra to algebra course is very useful. The literature 1, 4 also combined with the teaching of higher algebra course experience, explores in detail the strict logical reasoning methods, axiomatic method, structured method, matrix representation method and equivalent classification methods in the teaching effectively.2. The principle of keeping pace with The TimesReference at home and abroad the latest teaching material content, combined with our teaching, scientific research, the forefront of the course knowledge, research status and development trend, timely carry out the teaching process, often speak often new. For example, we can in the teaching process of the generation of mathematicians, algebra research of recent situation and some story of what happened something into the classroom, introduced to students, to motivate them to learn mathematics interest and enthusiasm.3. Reflect the principle of modern education conceptProperly arrange some exploratory content, content of extensibility, needed to build life-long learning algebra. The basis of applying modern methods in the teaching of mathematics course will be carried out; From the organization and arrangement of teaching content, classroom teaching and extra-curricular activities, the combination of knowledge, ability training and quality education, adopt various visual teaching method, using a projector and computer assisted instruction, increase the visual teaching, dissolve the mathematical abstraction and difficulty, promote the improvement of teaching quality.4. Highlight the characteristics of normal educationHuizhou university mathematics and application mathematics specialty is normal, and goals of mathematics in normal universities is the primary and secondary school teachers of mathematics, we work hard in the advanced algebra and modern algebra teaching pedagogy theory and mathematic teaching ideas, pay attention to study algebra course for middle school mathematics teaching guidance, fully embody the mathematical culture and mathematical beauty, cultivate students mathematical literacy and future math teachers comprehensive quality, to adapt to the needs of the elementary education and teaching reform.(2) keep trying various teaching ideas and methods1. primitive teaching method is adopted to improve the teachingHigh level of abstraction and formalization are the basic characteristics of algebra, advanced algebra, modern algebra and linear algebra the three college algebra course is recognized by students is difficult to learn math courses. The so-called primitive teaching method, is want to in the teaching, from the source, clear problems and the development process, first to truth, for us, lets student inductive definition or conclusion, another reason, and then abstract and formalized.Before introducing concept of isomorphism, for example, we can let the students to recall the concept and determination methods of triangles are congruent. Delta ABC with triangle delta A B C congruent is actually set up two triangle vertices and edges. Corresponding collection can be seen as two point S and T the elements of one to one correspondence, namely AA, and can be as A consequence of the two points, thereby corresponding can be seen as the edge of S and T keep them the result of two points. As A result, the isomorphism of two algebraic system is in fact the two may establish A one-to-one mapping between algebraic system, and the mapping to keep the two algebraic system of all operations.Again, for example, the introduction of the concept of vector linear correlation, we start with collinear plane vector and space vectors coplanar, introduces some examples of concrete, students are familiar with, and finally concludes the general definition of linear correlation. Teaching practice proves that this method of teaching students easy to accept, the effect is obvious.2. research-oriented teaching method is adopted to improve the teachingIn conducting scientific research at the same time, we will often taught courses at the forefront of knowledge, research into the teaching process, present situation and development trend of research on the practical experience, the way of thinking innovation, discipline frontier dynamic introduced to students, and puts forward some problems timely appropriate for students to study. For example, we in the advanced algebra or linear algebra courses teaching, the probe can give students the following questions: integrated embodiment of its matrix representation method, equivalence and classification methods of infiltration and application, the application of isomorphic thought, the analysis thought in algebra application and so on. In addition, we also can occasionally not starting from the definition and starting from the problem to organize and expand teaching of the course content and system, namely, starting from the important issues, according to the need to introduce concept, and sums up the theorem, guide students to explore and discover knowledge, to cultivate students innovative thinking. This is the body of the teaching process students, leading is a teacher.3. The use of analogy method for the teaching of the algebraic system related contentAnalogy method is commonly used in the mathematical discovery, one of the most effective way, it played a major role in the scientific history. The French mathematician Laplace said: even in mathematics, discover the truth of the tool is the induction and analogy, this would be enough to see the importance of analogy method.Analogy is through two kinds of different objects A, B between some of the properties of similar, so from A certain other attributes then guess B also has this property. The algebraic system of undergraduate major contact space vector space, european-style, group, ring and domain, etc. As A result of these algebraic system has some of the properties between similar, which is A collection of with operation, which shows that mathematical thinking method of analogy to try on these algebra course in the teaching or learning to use.For example, we in the teaching of advanced algebra or linear algebra, the analogy method can be used to explain the vector space and the European space, the definition and properties of matrix and linear transformation, relation and distinction between, and so on., for example, we are in the teaching of modern algebra, can use analogy to explain group of ring domain such as the concept of algebra system and its subsystems, homomorphism fundamental theorem of algebra system, explain some special ring (the ring, in addition to the ring and domain), the relationship between explain some special order (the only decomposition ring, principal ideal ring, Euclidean ring, etc.) of the relationship, and so on. Teaching practice proves that the method of teaching effect is obvious, and can cultivate the students how to discover new problems of scientific interest and ability.4. The class earnestly, back to speak with self-studyWe in algebra courses teaching, strive to class earnestly, back to speak with self-study. Class, focus, knowledge background and formation process and reveals the internal relation of knowledge and Returned to the emphasis and difficulty of the content, make students understand the abstract theory, learn from fear of love to learn; Self-study is to point to some students self-study, the teaching material content is used teachers questions, guidance and answering questions from work after class. We adopted a series of measures to guide students autonomous learning, is the main approach for different students to establish different levels of test paper library, establish a self-test volume, at the same time, the unified exam standards and requirements, ensure the impartiality and fairness.5. With scientific and technological innovation activities as the breakthrough point, motivate students inquiry learning(1) to develop the second classroomThrough lectures, introduction to algebra typical character, typical events in the history of the development, the typical thought method, connection, the application prospect of algebra and related disciplines, improve the learning interest in algebra. Guide students to discover mathematical problems in practice, to guide students to use the Matlab analysis and solve problems; To guide students autonomous learning, inquiry learning, gave them some difficulty is not a lot of research problem, let them go to outside information, print it out and use standard paper format. In this way, on the one hand, we can let all students to learn how to write a thesis math major, on the other hand, we also can make some of the better students written papers published to, so as to achieve every double effect.In addition, we also advocate students mathematics knowledge and practice, journal of mathematics education, the university mathematics, higher mathematics, bulletin, mathematics studies of middle school mathematics involved such as some professional knowledge is not deep find suits own journal articles, reports, and discussed in this paper.(2) subject contest as the platform, to improve students innovation ability togetherOur particular way is: with the national and international mathematical modeling competition platform, cultivate students innovative ability to solve practical problems; With the national ordinary university information technology innovation activities as the carrier, cultivate students information technology innovation ability.Mathematical modeling to inspire students enthusiasm to study mathematics, improving students mathematical model is established and the comprehensive ability to use computer technology to solve practical problems, promote the reform of college mathematics teaching content and method, etc all have important significance. Through two year model to participate in domestic and international mathematical contest in modeling disciplines, efforts to improve the students application ability and innovation ability, advocate to promote teaching, to education, and the modeling into their daily teaching; In mathematical modeling competition as the breakthrough point, trying to cultivate students innovation ability.(3) to guide students to declare all kinds of college students of science and technology innovation projects, cultivate students ability o

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論