彈性常數(shù)間關(guān)系.doc_第1頁(yè)
彈性常數(shù)間關(guān)系.doc_第2頁(yè)
彈性常數(shù)間關(guān)系.doc_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2.6.2 彈性常數(shù)及其相互之間的關(guān)系廣義虎克定律可寫(xiě)為 (13-2)或者簡(jiǎn)寫(xiě)為 (13-3)其中為體積應(yīng)變或應(yīng)變張量的第一不變量,為Kroneker符號(hào). 常用的彈性常數(shù)有、. 其中和稱(chēng)為拉梅常數(shù),G又稱(chēng)為剪切模量或剛性模量. 稱(chēng)為楊氏彈性模量,稱(chēng)為泊松比或橫向變形系數(shù),稱(chēng)為體積彈性模量. G可以利用純剪切試驗(yàn)直接測(cè)得, 此時(shí), 其余應(yīng)力分量均為零,根據(jù)(13-2), . 因此測(cè)得和即可求得G. 和可以利用單軸拉伸試驗(yàn)測(cè)得,此時(shí),其余. 令, (13-5)由廣義虎克定律(13-2) (13-6)將上三式相加得到將上式代入(13-6)的第一式得到 (13-7)代入(13-6)的第二式或第三式得到 (13-8)(13-7)、(13-8)也可以化為, (13-9)利用(13-9)可將虎克定律表示為如下更常用的形式 (13-10) 或 (13-11)其中,為應(yīng)力張量第一不變量,為Kroneker符號(hào).在各向均勻壓力試驗(yàn)中,, , 將上述應(yīng)力分量的值代入廣義虎克定律公式(13-2)得到,將上面三式相加就得到定義體積變形模量K為就得到 (13-12)可推出五個(gè)彈性常數(shù)之間的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論