




已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER20081199Real-TimeAdaptiveMotionPlanning(RAMP)ofMobileManipulatorsinDynamicEnvironmentsWithUnforeseenChangesJohnVannoyandJingXiao,SeniorMember,IEEEAbstractThispaperintroducesanovelandgeneralreal-timeadaptivemotionplanning(RAMP)approachsuitableforplan-ningtrajectoriesofhigh-DOForredundantrobots,suchasmobilemanipulators,indynamicenvironmentswithmovingobstaclesofunknowntrajectories.TheRAMPapproachenablessimultaneouspathandtrajectoryplanningandsimultaneousplanningandexe-cutionofmotioninrealtime.Itfacilitatesreal-timeoptimizationoftrajectoriesundervariousoptimizationcriteria,suchasmin-imizingenergyandtimeandmaximizingmanipulability.Italsoaccommodatespartiallyspecifiedtaskgoalsofrobotseasily.Theapproachexploitsredundancyinredundantrobots(suchaslo-comotionversusmanipulationinamobilemanipulator)throughloosecouplingofrobotconfigurationvariablestobestachieveob-stacleavoidanceandoptimizationobjectives.TheRAMPapproachhasbeenimplementedandtestedinsimulationoveradiversesetoftaskenvironments,includingenvironmentswithmultiplemobilemanipulators.Theresults(andalsotheaccompanyingvideo)showthattheRAMPplanner,withitshighefficiencyandflexibility,notonlyhandlesasinglemobilemanipulatorwellindynamicenviron-mentswithvariousobstaclesofunknownmotionsinadditiontostaticobstacles,butcanalsoreadilyandeffectivelyplanmotionsforeachmobilemanipulatorinanenvironmentsharedbymultiplemobilemanipulatorsandothermovingobstacles.IndexTermsAdaptive,dynamicobstaclesofunknownmotion,loosecoupling,mobilemanipulators,partiallyspecifiedgoal,realtime,redundantrobots,trajectoryoptimization.I.INTRODUCTIONMOTIONPLANNINGisafundamentalprobleminrobotics1,2concernedwithdevisingadesirablemo-tionforarobottoreachagoal.Motionplanningforhigh-DOFarticulatedmanipulatorsormobilemanipulatorsismorechal-lengingthanformobilerobotsbecausethehigh-dimensionalconfigurationspaceofarobothaslittleornoresemblancetothephysicalspacethattherobotworksin,andhowtoconstructManuscriptreceivedMay16,2007;revisedDecember13,2007andMarch5,2008.FirstpublishedOctober10,2008;currentversionpublishedOctober31,2008.ThispaperwasrecommendedforpublicationbyAssociateEditorK.YamaneandEditorL.Parkeruponevaluationofthereviewerscomments.ApreliminarypartofthispaperwaspresentedattheIEEEInternationalCon-ferenceonIntelligentRobotsandSystems,Sendai,Japan,2004.TheauthorsarewiththeIntelligent,MultimediaandInteractiveSystems(IMI)Laboratory,DepartmentofComputerScience,UniversityofNorthCarolinaatCharlotte,Charlotte,NC28223USA(e-mail:;).Thispaperhassupplementarydownloadablematerialavailableat,providedbytheauthors:avideoshowingthereal-timeplanningandexecutionofmobilemanipulatormotionbyourRAMPalgorithm.Thisvideois14MBinsize.Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineat.DigitalObjectIdentifier10.1109/TRO.2008.2003277aconfigurationspacehigherthanthreedimensionsefficientlyremainsalargelyunsolvedproblem.A.RelatedResearchonMotionPlanningRandomizedalgorithms,suchasthepopularprobabilisticroadmap(PRM)method3andrapidlyexploringrandomtree(RRT)method4,arefoundtobeveryeffectiveinfindingacollision-freepathforarobotwithhighDOFsofflinebe-causesuchalgorithmsavoidbuildingtherobotsconfigurationspaceexplicitlybysamplingtheconfigurationspace.ThePRMmethodhasinspiredconsiderableworkonimprovingsamplingandroadmapconstruction2,includingarecentpaper5onproducingcompactroadmapstobettercapturethedifferentho-motopicpathgroups.Bybuildingatreeratherthanagraph,theRRTmethodismoresuitableforgeneratingapathinoneshotorgeneratingatrajectorydirectlyandthusmoresuitableforonlineoperation6.Bothmethodshaveseenmanyvariants2.Therearealsomethodsforpathplanningbasedonge-neticalgorithms(GAs),ormorebroadly,evolutionarycom-putation7,8,whicharegeneralframeworksofrandomizedsearchsubjecttouser-definedoptimizationcriteria.Suchop-timizationtechniqueshavebeenusedwidelyandsuccessfullyinmanyapplicationdomains8,9totackleNP-hardopti-mizationproblems.Therearetwomajorwaysofapplications.Onestraightforwardwayistomapaproblemintotheformsuitableforastandard,off-the-shelfGA,solveitbyrunningtheGA,andthen,maptheresultsbacktotheapplicationdo-main.Thisone-size-fit-allapproachisoftennoteffectivebe-causeitforcesartificialtransformationofaproblemintosome-thingelsethatisconfinedintheformatofastandardGAbutmaylosecertainimportantnatureoftheoriginalproblem.SomeGA-basedpathplanningmethods10,11adoptsuchanap-proach,whereC-spaceisdiscretizedintoagrid,andapathisintermsofafixed-lengthsequenceofgridpoints.AsthestandardGAoperatesonfixed-lengthbitstrings,searchisoftenveryslow.Amoreeffectiveapproachistoadoptthegeneralideaofevolutionarycomputationtosolveaprobleminamorenaturalandsuitablerepresentation.Thepathplanningmethodsreportedin1214belongtosuchacustomizedapproach.Areal-timepathplanningmethodisreportedin12for2DOFpointmobilerobots,whichisextendedin13for3DOFpointflyingrobotswithspecificconstraints.Amultiresolutionpathrepresentationisproposedin14forpathplanning.However,allevolution-aryalgorithmshaveanumberofparametersthatmustbesetappropriately,whichisoftennotatrivialtask.1552-3098/$25.002008IEEE1200IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER2008Unlikepathplanning,motionplanninghastoproduceanexecutabletrajectoryforarobotinconfigurationtimespace,orCT-space,andnotmerelyageometricalpath.Acommonapproachistoconducttrajectoryplanningonthebasisofapathgeneratedbyapathplanner.Anotableframeworkistheelasticstripmethod15,whichcandeformatrajectoryforarobotlocallytoavoidmovingobstaclesinsideacollision-free“tunnel”thatconnectstheinitialandgoallocationsoftherobotina3-Dworkspace.Sucha“tunnel”isgeneratedfromadecomposition-basedpathplanningstrategy16.Theotherapproachistoconductpathandtrajectoryplanningsimultaneously.However,mosteffortinthiscategoryisfocusedonofflinealgorithmsassumingthattheenvironmentiscompletelyknownbeforehand,i.e.,staticobjectsareknown,andmovingobjectsareknownwithknowntrajectories1720.Asfordealingwithunknownmovingobstacles,onlyrecentlysomemethodswereintroducedformobilerobots21,22.Thecombinationofmobilityandmanipulationcapabilitymakesamobilemanipulatorapplicabletoamuchwiderrangeoftasksthanafixed-basemanipulatororamobilerobot.Foramobilemanipulator,ataskgoalstateisoftenpartiallyspecifiedaseitheraconfigurationoftheend-effector,whichwecallaplace-to-placetask,oradesiredpath(ortrajectory)oftheend-effector,whichwecallacontour-followingtask,andthetargetlocation/pathofthebaseisoftenunspecified.Here,amajorissueofmotionplanningisthecoordinationofthemobilebaseandthemanipulator.Thisissue,asitinvolvesredundancyresolution,presentsbothchallengesandopportu-nities.Thereexistsarichliteratureaddressingthisissuefrommanyaspects.Someresearcherstreatthemanipulatorandthemobilebasetogetherasaredundantrobotinplanningitspathforplace-to-placetasks2325.Somefocusedonplanningasequenceof“commutationconfigurations”forthemobilebasewhentherobotwastoperformasequenceoftasks26,27subjecttovariousconstraintsandoptimizationcriteria.Othersfocusedoncoordinatingthecontrolofthemobilebaseandthemanipulatorinacontour-followingtask28,29bytryingtopositionthemobilebasetomaximizemanipulability.Manyconsiderednonholonomicconstraints.Whilemostoftheexistingworkassumesknownenviron-mentswithknownobstaclesforamobilemanipulator,afewresearchersconsideredlocalcollisionavoidanceofunknown,movingobstaclesonline.Onemethod30usedRRTasalocalplannertoupdatearoadmaporiginallygeneratedbyPRMtodealwithmovingobstacles.Forcontour-followingtasks,anef-ficientmethod31allowsthebasetoadjustitspathtoavoidamovingobstacleifpossiblewhilekeepingtheend-effectorfol-lowingacontour,suchasastraightline.Anothermethod29allowedthebasetopauseinordertoletanunexpectedobsta-clepasswhilethearmcontinueditscontour-followingmotionunderanevent-basedcontrolscheme.Othermethodsincludeonebasedonpotentialfield32toavoidunknownobstaclesandonebasedonaneuro-fuzzycontroller33tomodifythebasemotionlocallytoavoidamovingobstaclestably.Thereisalsoanonlineplannerforthespecialpurposeofplanningthemotionsoftworobotarmsgettingpartsfromaconveyerbelt34.However,wearenotawareofanyexistingworkthatcanplanmotionsofhigh-DOFrobotsgloballyamongmanyunknowndynamicobstacles.B.OurProblemandApproachPlanninghigh-DOFrobotmotioninsuchanenvironmentofmanyunknowndynamicobstaclesposesspecialchallenges.First,planninghastobedoneinrealtime,cannotbedoneof-fline,andcannotbebasedonacertainprebuiltmapbecausetheenvironmentisconstantlychanginginunforeseenways,i.e.,theconfigurationspaceobstaclesareunknownandchanging.Examplesofsuchenvironmentsincludealargepublicsquarefullofpeoplemovingindifferentways,awarehousefullofbusy-movingrobotsandhumanworkers,andsoon.Suchanenvironmentisverydifferentfromstaticorlargelystaticenvi-ronmentsorknowndynamicenvironments(i.e.,withotherob-jecttrajectoriesknown),wheremotionplanningcanreasonablyrelyonexploringC-space(forknownstaticenvironments)orCT-space(forknowndynamicenvironments)offline(suchasbyPRM).Theelasticstripmethodprovidestheflexibilitytomakesmalladjustmentsofarobotmotiontoavoidunknownmotionsofobstacles,iftheunderlyingtopologyoftheC-spacedoesnotchange.ForanenvironmentwithchangingC-spacetopologyinunknownways,aplannedpath/trajectorycanbeinvalidatedcompletelyatanytime,andthus,real-timeadaptiveglobalplan-ningcapabilityisrequiredformakingdrasticchangesofrobotmotion.Planningandexecutionofmotionshouldbesimulta-neousandbasedonsensingsothatplanninghastobeveryfastandalwaysabletoadapttochangesoftheenvironment.Bynature,totacklemotionplanninginanunknowndynamicenvironmentcannotresultinacompleteplanningalgorithm.Thatis,noalgorithmcanguaranteesuccessinsuchanunknownenvironment.Wecanonlystriveforarationalalgorithmthatservesasthe“bestdriverofahigh-DOFrobot,buteventhebestdrivercannotguaranteetobeaccident-freeifotherthingsintheenvironmentarenotunderhis/hercontrol.Thispaperaddressestheproblemofreal-timesimultaneouspathandtrajectoryplanningofhigh-DOFrobots,suchasmobilemanipulators,performinggeneralplace-to-placetasksinadynamicenvironmentwithobstaclemotionsunknown.Theobstaclemotionscanobstructeitherthebaseorthearmorbothofamobilemanipulator.Weintroduceauniqueandgeneralreal-timeadaptivemotionplanning(RAMP)approach.OurRAMPapproachisbuiltuponboththeideaofrandomizedplanningandthatoftheanytime,parallel,andoptimizedplanningofevolutionarycomputation,whileavoidingthedrawbacks.Theresultisauniqueandoriginalapproacheffectivefortheconcernedproblem.TheRAMPapproachhasthefollowingcharacteristics.1)WholetrajectoriesarerepresentedatonceinCT-spaceandconstantlyimprovedduringsimultaneousplan-ningandexecution,unlikealgorithmsthatbuildapath/trajectorysequentially(orincrementally)sothatawholepath/trajectorycanbecomeavailableonlyattheendoftheplanningprocess.OuranytimeplannercanprovideavalidtrajectoryquicklyandcontinuetoproducebetterVANNOYANDXIAO:REAL-TIMEADAPTIVEMOTIONPLANNING(RAMP)OFMOBILEMANIPULATORSINDYNAMICENVIRONMENTS1201trajectoriesatanylatertimetosuittheneedofreal-timeglobalplanning.2)Differentoptimizationcriteria(suchasminimizingen-ergyandtimeandoptimizingmanipulability)canbeaccommodatedflexiblyandeasilyinaseamlessfash-ion.Optimizationisdonedirectlyintheoriginal,con-tinuousCT-spaceratherthanbeingconfinedtoacertainlimitedgraphorroadmap.Trajectoriesareplannedandoptimizeddirectlyratherthanconditionaltotheresultsofpathplanning.3)Ourplannerisintrinsicallyparallelwithmultiplediversetrajectoriespresentallthetimetoallowinstant,andifnecessary,drasticadjustmentofrobotmotiontoadapttonewlysensedchangesintheenvironment.Thisisdiffer-entfromplannerscapableofonlylocaltrajectoryadjust-mentbasedonaknownsetofhomotopicpaths.Itisalsodifferentfromsequentialplanners,suchasanytimeA*search35,whichalsorequiresbuildingadiscretestatespaceforsearchalimitationthatourplannerdoesnothave.4)Trajectorysearchandevaluation(ofitsoptimality)areconstantlyadaptivetochangesbutbuiltupontheresultsofprevioussearch(i.e.,knowledgeaccumulated)tobeefficientforreal-timeprocessing.5)Asplanningandexecution(i.e.,robotmotionfollowingtheplannedresultsofar)aresimultaneous,partiallyfeasi-bletrajectoriesareallowed,andtherobotmayfollowthefeasiblepartofsuchatrajectory(ifitisthecurrentbest)andswitchtoabettertrajectorytoavoidtheinfeasiblepart.6)Withmultipletrajectoriesfromourplanner,eachtrajec-torycanendatadifferentgoallocationinagoalregion,i.e.,partiallyspecifiedgoals,ratherthanasinglegoalcon-figuration.7)Ourplannerrepresentsatrajectoryforaredundantrobot,suchasamobilemanipulator,aslooselycoupledtrajec-toriesofredundantvariablestotakeadvantageofthere-dundancyinordertobestachieveobstacleavoidanceandvariousoptimizationobjectives.Therestofthepaperisorganizedasfollows.SectionIIpro-videsanoverviewofourRAMPapproach;SectionsIIIandIVdescribeproblemrepresentationandinitialization;SectionVoutlinesouroptimizationcriteriafortrajectoryevaluationanddescribesthestrategiesforevaluation.SectionsVIandVIIde-scribethestrategiestoaltertrajectoriestoproducebetterones.SectionVIIIdescribeshowtheRAMPplannercancreateandpreserveadiversesetoftrajectories.SectionIXprovidesim-plementationandexperimentationresultsanddiscussesperfor-manceoftheplanner.SectionXconcludesthepaper.II.OVERVIEWOFTHERAMPAPPROACHOnebasicpremiseofourapproachisthattheplanningprocessandtheexecutionofmotionareinterweavingtoenablesimul-taneousrobotmotionplanningandexecution.ThisisachievedthroughouranytimeplanningalgorithmthatalwaysmaintainsasetofcompletetrajectoriesintheCT-spaceoftherobotcalledapopulation.Thefeasibilityandoptimalityofeachtrajectory,calledfitness,isevaluatedthroughanevaluationfunctioncod-ingtheoptimizationcriteria.Feasibilityreferstocollision-freeandsingularity-free.Bothinfeasibleandfeasibletrajectoriesareallowedinapopulation.Feasibletrajectoriesareconsideredfit-terthaninfeasibletrajectories.Withineachtype,trajectoriesarecomparedforoptimalityinfitness.Theinitialpopulationisacombinationofrandomlygeneratedanddeliberatelyseededtrajectories.Deliberatelyseededtrajec-toriesincludeonesconstructedtorepresentdistinctsubpopula-tionsinordertoachievecertaindiversityinthepopulation.Iftheenvironmentcontainsknownstaticobstacles,trajectoriesbasedonpreplannedfeasiblepathswithrespecttotheknownstaticobstaclescanalsobeincluded.SeeSectionIVformoredetails.Oncetheinitialpopulationisformed,itisthenimprovedtoafitterpopulationthroughiterationsofimprovements,calledgen-erations.Ineachgeneration,atrajectoryisrandomlyselectedandalteredbyarandomlyselectedmodificationoperatoramonganumberofdifferentmodificationoperators,andtheresultingtrajectorymaybeusedtoreplaceatrajectorythatisnotthefittesttoformanewgeneration.Thefittesttrajectoryisalwayskeptinthepopulationandcanonlyimprovefromgenerationtogeneration.Eachgenerationisalsocalledaplanningcycle.Toimprovethefitnessoftheinitialpopulation,anumberofinitialplanningcyclesmayberunbasedontheinitialsensinginformationoftheenvironmentbeforetherobotbeginsexecut-ingthefittesttrajectory.Therobotneednotwaitforafeasibletrajectorytoemerge;ifnofeasibletrajectoryisavailable,therobotwillbeginmovingalongthefittestinfeasibletrajectorywhilecontinuingthesearchforafitter,andhopefullywilllocateafeasibletrajectorybeforeitcomeswithinadistancethresholdDofthefirstpredictedcollisionorsingularityoftheexecutedtrajectory.Thisstrategymakessensebecause:1)thepresentlypredictedinfeasibletrajectorymaybecomefeasiblelaterandviceversa;2)astobedescribedlater,ourplannermakestherobotswitchtoabettertrajectoryifoneisavailable,andthus,beforetheinfeasiblepartofthecurrentlyfollowedtrajectoryisencountered,therobotmayalreadyswitchtoabettertrajectory;3)thestrategyallowslimitedsensing,inwhichtherobotmaynotsenseanobstacleuntilgettingcloser;and4)itprovidesameasureofsafetyintrajectoryevaluation(seeSectionV).Astherobotmoves,planningcontinuestoimprovethepopu-lationoftrajectoriesuntilthenextcontrolcycle,whentherobotcanswitchtoafittertrajectorysothatitalwaysfollowsthebesttrajectory.Forthatpurpose,eachtrajectoryisalwaysupdatedtostartfromthecurrentrobotconfigurationwiththecurrentvelocitywhenanewcontrolcyclebegins.Forthetrajectorythatisbeingfollowed,thismeansthattheexecutedportionofthetrajectoryisdroppedfromthetrajectory,whileforeveryothertrajectory,itmeansthatonlythestartingconfigurationandve-locityarechangedtherestoftheknotpointsonthetrajectory(seeSectionIII)remainintact.Notethateachcontrolcycleheredoesnotnecessarilyhavetobeaservocycleofthelow-levelcontroller.Ourcontrolcycle,whichishighlevelforcontrollingtherateofadaptation,canbelongerthanaservocycletoensurethatwithinacontrolcycle,therecanbemorethanoneplanningcycle.Thisisbecauseadaptationisguidedbyplanning.1202IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER2008Fig.1.Relationshipamongplanning,control,andsensingcycles.Changesinadynamicenvironmentaresensedandfedtotheplannerineachsensingcycle,whichleadtoupdatedfitnessvaluesoftrajectoriesinthesubsequentplanningcycles,andunknownmotionsofmovingobstaclesarepredictedinfitnessevaluationofrobottrajectories.Thepresenceofadiversepopu-lationofever-improvingtrajectoriesenablestherobottoquicklyadapttochangesintheenvironment.Itdoessobyfollowingthefittesttrajectoryundereachcircumstance:whenthecurrenttra-jectorythattherobotfollowsbecomesworseorcannolongerbefollowedduetoimminentcollision(i.e.,thethresholdDisreached),therobotmaynotneedtostopitsmotionandreplanfromscratch;rathertheplanneroftenmerelyneedstoswitchtherobottoafeasibleorbettertrajectoryinthepopulationswiftlyinaseamlessfashion.Thechosentrajectorycanbeofaverydifferenthomotopicgroupfromthepreviousonetodealwithdrasticandlargechanges.InthecasewhentherobotreachesDofthecurrenttrajectorybutfindsnobettertrajectorytoswitchto,itwillstopitsmotionatD,whichiscalledaforcedstop.However,theRAMPplanner(i.e.,therobots“thinking”process)neverstops,anditcontinuestoplanandsearchforabettertrajectoryfortherobot.Therobotresumesitsmotiononceabettertrajectoryisfound.Suchplanning/control/sensingcyclescontinuetointeractandmovetherobottowardagoalconfigurationinthebestpossiblewayinrealtime:improvingthetrajectoriesitfollowsifthereisnochangeintheenvironment,orbothadaptingandimprovingthetrajectori
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 嵌入式開(kāi)發(fā)中的團(tuán)隊(duì)協(xié)作技巧試題及答案
- 2025年C語(yǔ)言實(shí)戰(zhàn)試題及答案合集
- 2025版高考生物一輪復(fù)習(xí)第2單元第1講細(xì)胞膜和細(xì)胞核教學(xué)案新人教版
- 解除保姆雇傭合同協(xié)議書(shū)
- 2025年計(jì)算機(jī)ACCESS自我提升計(jì)劃試題及答案
- 三年級(jí)語(yǔ)文上冊(cè)第八單元30給予樹(shù)教案2魯教版1
- 計(jì)算機(jī)四級(jí)考試的備考要點(diǎn)試題及答案
- 屋頂水箱轉(zhuǎn)讓合同協(xié)議書(shū)
- 2024-2025學(xué)年四年級(jí)語(yǔ)文上冊(cè)第二單元練習(xí)二教案蘇教版
- C語(yǔ)言函數(shù)與模塊化編程試題及答案
- 積分制管理的實(shí)施方案及細(xì)則
- 正定古建筑-隆興寺
- 走進(jìn)物理-基礎(chǔ)物理智慧樹(shù)知到答案2024年廣西師范大學(xué)
- 三菱電梯型號(hào)縮寫(xiě)簡(jiǎn)稱
- 2024年版-生產(chǎn)作業(yè)指導(dǎo)書(shū)SOP模板
- 歷年考研英語(yǔ)一真題及答案
- 寵物殯葬師理論知識(shí)考試題庫(kù)50題
- 飛花令“水”的詩(shī)句100首含“水”字的詩(shī)句大全
- 門診常見(jiàn)眼科病
- 保育師中級(jí)培訓(xùn)課件資源
- 教學(xué)機(jī)房規(guī)劃方案
評(píng)論
0/150
提交評(píng)論