




已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
M.J.RoemerC.HongS.H.HeslerStressTechnologyInc.,1800Brighton-HenriettaTownLineRd.,Rochester,NY14623MachineHealthMonitoringandLifeManagementUsingFinite-Element-BasedNeuralNetworksThispaperdemonstratesanovelapproachtocondition-basedhealthmonitoringforrotatingmachineryusingrecentadvancesinneuralnetworktechnologyandrotordynamic,finite-elementmodeling.Adesktoprotordemonstrationrigwasusedasaproofofconcepttool.Theapproachintegratesmachinerysensormeasurementswithdetailed,rotordynamic,finite-elementmodelsthroughaneuralnetworkthatisspecificallytrainedtorespondtothemachinebeingmonitored.Theadvantageofthisapproachovercurrentmethodsliesintheuseofanadvancedneuralnetwork.Theneuralnetworkistrainedtocontaintheknowledgeofadetailedfinite-elementmodelwhoseresultsareintegratedwithsystemmeasurementstoproduceaccuratemachinefaultdiagnosticsandcomponentstresspredictions.Thistechniquetakesadvantageofrecentadvancesinneuralnetworktechnologythatenablereal-timemachinerydiagnosticsandcomponentstresspredictiontobeperformedonaPCwiththeaccuracyoffinite-elementanalysis.Theavailabilityofthereal-time,finite-element-basedknowledgeonrotatingelementsallowsforreal-timecomponentlifepredictionaswellasaccurateandfastfaultdiagnosis.IntroductionMaximizingoperatinglifeandavailabilityofallcriticalcomponentsonrotatingmachinery,whileminimizingunplannedmaintenancedowntimeandtheriskofcatastrophicfailure,isacommongoalwithinallindustry.Thispaperdemonstratesafiniteelementbasedneuralsystemforimprovingthepresentstateoftheartinmachineryhealthmonitoringbyincreasingtheeffectivenessofstructuralcomponentdiagnosticsandmonitoring.Inparticular,neuralnetworkclassifiersweredevelopedthatoperateasahubforinformationgatheringandservedtomakeinformeddecisionsonarotorsystemshealthusingexperimentalandanalyticaldata.Thenetworkobservesthebehavioroftherotorsystembeingmonitoredtodiagnosestructuralfaultsandpredictcomponentstressesfromavarietyofpotentialfailuresources.Adesktopdemonstrationrotorwasusedasaproofconcepttool.Sensorsonthedemonstrationrigmeasurevibrationamplitudeandphaseatappropriatelocationsthroughouttherotorsystem.Fromthesemeasurements,theneuralsystemwilldiagnosefaultsandpredictrotatingmembercomponentstressesbywayofaneuralnetworktrainedextensivelyfromadetailed,rotordynamics,finite-elementmodel(FEM).Currently,commerciallyavailableexpertsystemsusedforconditionmonitoringuseonlymeasuredsystemdata,withnoknowledgeofrotatingcomponentstresses.Withoutthesestressdata,calculatingremainingcomponentlifedirectlywouldbeverydifficult.Theminiaturizedrotorrigdemonstrateshowtheneuralsystemcanbeusedtoobtainbothreal-time,finite-elementmodelresultsandmachinefaultdiagnostics.Thefinite-elementmodelcapabilityisdemonstratedbyestimatingthedynamicstressesontherotatingshaftandreactionforcesonthebearings.Thediagnosisabilityofthenetworkisillustratedbypredictingthelocation,magnitude,andphaseofdiskunbalances,amountofmisalignment,degreeofrotorrubormechanicallooseness,andbearingclearanceproblems.ThedynamicstressestimationandContributedbytheInternationalGasTurbineInstituteandpresentedatthe40thInternationalGasTurbineandAeroengineCongressandExhibition,Houston,Texas,June5-8,1995.ManuscriptreceivedbytheInternationalGasTurbineInstituteFebruary27,1995.PaperNo.95-GT-243.AssociateTechnicalEditor:C.J.Russo.structuraldiagnosesarebothperformedfromthevibrationmeasurementstakenfromthebearinglocations.Thispaperalsoshowstheabilityofthenetworktopredictthenonlineardynamicstressesintheshaft,whilesimultaneouslypredictingmechanicalfaults.RotorDemonstrationRigandMeasurementProcessingRotorSystemConfiguration.Adesktoprotorrigwasconstructedtodemonstratetheconceptsproposedinthispaperonactualhardware.Thedemonstrationrigwasdesignedtobeversatileenoughtoduplicatevariousvibration-producingphenomenafoundinalltypesofrotatingsystems.Manydifferenttypesofvibration-relatedcharacteristicswerecreatedandmeasuredbychangingrotorspeed,degreeofunbalance,degreeofmisalignment,shaftbow,shaftrub,androtorbearingclearances.Theresultingdynamiccharacteristicsaremeasuredwithproximityprobesand/oraccelerometersandareprocessedwithamultichanneldynamicsignalanalyzer.TherotorconfigurationstudiedinthispaperisshowninFig.1.Therotorsetupconsistsofthefollowingcomponents:1JQHPelectricmotor.2Flexiblerubbercoupling.3Rigidsteelcoupling(user-controlledsourceofshaftmisalignment)43ballbearingsand3journalbearings.52rotatingdiskswithbalanceweightholes.6gin.diameterand25in.-longsteelshaft.7Motorspeedcontrollerwithclosed-loopfeedback.8Variousproximityprobesandaccelerometers.9Fixturingtoproviderotorpreloads,rotorrub,andmechanicalloosenessconditions.Tworollerbearingssupportthemotorarmature,whilefouroil-impregnatedbronzesleevebearingsarepositionedbetweenthevariouscouplingsanddisks.Asolid36in.aluminumbasewithadjustablebearingpedestallocationsandrubberisolationfeetprovidesufficientrigiditytotherotorconfiguration.Motorspeedcontrolismaintainedwithaproportionalspeedfeedback830/Vol.118,OCTOBER1996TransactionsoftheASMECopyright1996byASMEDownloaded19Mar2009to43.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmMOTORRIGIDCOUPFLEXCOUPBRG3Fig.1Rotordemonstrationrigalgorithm,withspeedsensedbyadedicatedproximityprobesandtoothedwheel.Therotorwasinitiallybalancedwithin0.05milsintwoplanesbeforeanymeasurementsweretaken.Aspeedrun-uptestwasperformedtoexperimentallydeterminetherotorscriticalspeeds.Themeasuredrotorresponsefrom0to100HzisgiveninFig.2.Thefirstresonantrotormodewasidentifiedatapproximately80Hzor4800rpm.Therotorwasruncontinuouslyat40Hzinabalancedconditiontodeterminethesensitivityoftherotortochangingconditions.DataAcquisitionandDatabaseDevelopment.Vibrationmeasurementsobtainedfromproximityprobesandaccelerome-tersweresignalconditionedandthenprocessedbyanOno-SokkiCF6400,four-channel,digitalsignalanalyzer.Themeasuredfrequencyresponseswerethentransferredtoapersonalcomputerwherethepertinent,per-revmagnitudeandphasereadingsweredetermined.Note,theinputparameterstotheneuralnetworkclassifiersweremagnitude(mils)andphase(degrees)oftheIXperrevrotorspeedatalltransducerlocations.Seededfaultswereintroducedintotherotordemonstrationsystembyapplyingmassunbalancestothedisks,misalignmentacrosstherigidcoupling,looseningthebearingpedestals,andinstallingprewornbearings.Undereachoftheseconditions,measurementswereobtainedfromeachoffourproximityprobestodeterminethemagnitudeandphaseofeachtransducerwithrespecttothereferencekeyphaser.Thespecificmagnitudeandphasemeasurementswerethenloggedintoadatabasewithspecificinput-outputpairsthatareusedintheneuralnetworktrainingprocedure.Alistoftheinput-outputpairsthatareincludedinthedatabaseisgivenbelow.RotordynamicsFiniteElementModelAdetailedmodeloftherotordemonstrationsystemwasdevelopedusingadedicatedfiniteelementrotorprogramdevelopedatSTIcalledRDA(RotorDynamicsAnalysis).Thiscomputerprogramwasusedtosimulaterotoroperationandtotraintheneuralnetworkclassifiers.RDAisfinite-elementbased,andcontainsanarrayofpreprocessorroutinestofacilitategrid0iiiiiiiiiiiiiiiiiiiiiiiiiiiii61319.527.6344248.664.662.671788886Frequency(Hz)OptionsHelpTT1HiiimiiiHiliii(;t*Mw3$*d*a$mHxtemw&i4ltt*Mtrifwp*yvfflwvHMinmaHiUlms-RadialOTangentIolOfWalOErantIsometricOBockIsonetrlcOGeneraIRotate=r-=r-#Badlal|ijjjOlong.Incr,Peg,OBXIOIamnFig.2Rotorresponse0-100HzFig.3Calculatedfirstcriticalrotormodegeneration.Thefinite-elementbasedmodelpredictsoverallrotorvibratorycharacteristicsaswellaslocalvibratorystresslevels.Thegeneralgeometryoftherotorisprescribedtothecodeattheoutset,toallowselectionofthepreprocessor(andinputinstructions)tobemade.Theaddedvalueofhavingafinite-element-model-baseddiagnosticsystemisthatitprovidesaveryaccuratepictureoftherotorstressdistributionandreactionforces.Thesestressesandforcesarethecausesofmanyofthecomponentfailuresintherotor,bearings,seals,etc.Withtherotatingshaftcomponentstressespredicted,anautomatedlifeanalysisalgorithmwillbeabletodeterminewhattheexpectedcomponentlifewillbewithanydamagecondition.Thefiniteelementmodelofthedemonstrationrotorconfigurationwasdevelopedandcorrelatedtotheexperimentalresults.Themodelwasusedasanadditionalsourceofinformationforenhancedtrainingoftheneuralnetwork.Inparticular,thenetworkwastrainedfromthemodeltodeterminedynamicstressesandforcesincriticalmechanicalcomponentssothatitwouldbeabletocalculateremainingcomponentlifeasadiagnosticoutput.Figure3illustratesthefirstcriticalmodeassociatedwiththefiniteelementmodel.Notethecloseagreementbetweenthemeasuredandcalculatedfirstcriticalmodes.Thismodelwasusedforcalculatingdynamicstressesintheshaftandbearingreactionforcesundervariousoperatingconditionsincludingunbalancesandmisalignment.NeuralNetworkDescriptionandDevelopmentTheneuralnetworkarchitecturesdevelopedinthispaperservedasahubforinformationgathering/processingandresultedininformeddiagnosesoftheconditionofthedemorotorrigusingacombinationofexperimentalandanalyticaldata.Theinternalinterconnectionsoftheproposedneuralnetworkarchitecturesweredevelopedbasedontheamountofdatatobeprocessedbytheneuralnet.Thisisanalogoustomodelingthenumberofneuronsinthesystemsbraintobeutilizedforaparticularnetwork.Themoreneuronsusedintheentirenetwork,thelargerthesolutionspacewillbeforgeneralizingasystemsbehavior.Severalmultilayer,feedforwardnetworksweredevelopedforthisproject,utilizingthebackpropagationalgorithmforminimizingtheerrorsignals.Twoprincipalneuralnetworkarchitecturesweredevelopedinordertoexaminethesensitivityandaccuracyofdifferentnetworkdesignphilosophies.SingleNetworkArchitecture.Thesinglenetworkconfigurationdevelopedfirstutilizedfourbearingvibrationinputmeasurements(includingmagnitudeandphase)andfunctionalJournalofEngineeringforGasTurbinesandPowerOCTOBER1996,Vol.118/831Downloaded19Mar2009to43.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmSBIRNETWORKCONFIGURATIONBRO1MAC.8RGIPHASEBRG2MAG.BRO2PHASEBRO3MAG.8RG3PHASEBRG4MAG.BRG4PHASBUNBALANCEDISKI(MOOH)UNBALANCEMAOUNBALANCEPHASE(dffurtti)UNBALANCEDISKI(0-1Wi%|UNBAUNCEMAG.(grnrnj)UNBALANCEPHASE(dqjrwi)MISALIGNMENT(u-100%)OFFSETAMOUNT(miti)BENDINGSTRESSDISKI(pli)BENDINGSTRESSDISK2|pu)RADIALFORCEBRGI(It*|RADIALFORCEBRG2(lb)IBEARINGWEAR(0-lOOtt)MECHANICALLOSSENESS(0-IQOWIFig.4Singleneuralnetworkarchitectureenhancementsofthesefoursensorinputstoyield24inputnodestothenetwork.Adiscussiononthepracticeofusingfunctionalenhancementstoimprovetrainingaccuraciesandtimingisgivenlater.Onehiddenlayer,consistingof24nodes,isusedtoincreasetheflexibilityofthenetwork.Hiddenlayers,whenusedproperly,canprovidemoreaccuratecorrelationbetweencomplex,linear,andnonlineartrainingpatterns.Theoutputlayerofthenetworkconsistsof14nodes.Figure4isarepresentationofthistypeofsingleneuralnetworkarchitecturewithitscorrespondinginput/outputparameters.Note,duetothespacelimitationassociatedwiththefigure,the24inputandhiddenlayernodeswerereducedtofitonthepage.Thefirstsixnodesoftheoutputlayerarededicatedtodetermining:(1)theprobabilitythatanunbalancemayexist,(2)themagnitudeoftheidentifiedunbalance,and(3)thephaselocationoftheunbalanceontheout-of-balancedisk.Thenexttwooutputnodesdetermineifamisalignmentexistsacrosstherigidcoupling.Theprobabilityofhavingamisalignmentisdeterminedalongwiththemagnitudeoftheoffsetinmils.Fouroutputnodesofthenetworkarededicatedtovirtualsensing.Virtualsensingreferstoindirectlymeasuringaparametersuchasshaftstressorbearingforcesbymatchingpatternsofdirectlysenseddata(suchasbearingdisplacement)withafiniteelementmodeltoyieldanaccuratemeasurementoftheunmeasuredparameter.Forthedemonstrationrotorsystem,theshaftbendingstressesandbearingforcesarecalculatedusingadetailedfinite-elementmodeloftherotorforparticularrotorconditions.Theneuralnetworkisthentrainedtorecognizethesensedpatternsandrelatethemtothevaluescalculatedfromthemodel.Theresultisaneuralnetwork(trainedfrommeasurementsandFEmodel)thatiscapableofvirtuallysensingstressesandreactionforcesonparticularcomponentsinrealtimewithoutactuallyhavinginstalledstraingagesorforcetransducersonboard.Thelasttwonodesoftheoutputlayerdiagnosetheprobabilityofrotorruborbearingclearanceproblemsandstructuralsupportlooseness.DividedNetworkArchitecture.Adivided,multilayernetworkarchitecturewasdevelopedthatusedthesamefourbearingvibrationinputmeasurements(includingmagnitudeandphase)asthepreviousarchitecture.However,inthiscase,thenewnetworkconfigurationwasbrokenupintosmaller,morespecializedclassifiers.AnillustrationofthisnetworkarchitectureisgiveninFig.5.Thefirstsectionofthisnewnetworkconfigurationdiagnosesthegrossfaultconditionaseither:(1)anunbalanceondiskNo.1,(2)anunbalanceondiskNo.2,(3)amisalignmentacrosstherigidcoupling,(4)abearingwearorclearanceproblem,or(5)astructural/mechanicalloosenessproblem.Thesecondlayerutilizesthesamebearingvibrationinputstodeterminespecificlevelsofunbalanceand/ormisalignmentabouttheparticularlyidentifiedfaultaswellasgiveimportantvirtualsensinginformationaboutshaftstressesandbearingreactionforces.ThetopnetworkarchitectureinthesecondlayerdeterminesthefaultspecificswithrespecttoadiskNo.1unbalance.Theseverityoftheunbalanceisdiagnosedinthefirstoutputnode.Theseverityoutputvaluesrangefrom0of1,with1representingthemostseverecondition.Thesecondandthirdoutputnodesdeterminethemagnitudeandphaseoftheunbalanceconditionsothatcorrectiveactioncanbetakenatanytime.Theseverityoftheunbalancediagnosisiscontinuouslymonitoredandtrackedtoidentifyaworseningcondition.ThenetworkarchitectureinthesecondlayerdiagnosesanunbalanceconditionondiskNo.2.TheoutputnodespecificsareidenticaltothediagnosisnetworkassociatedwithdiskNo.1.Athirdnetworkinthesecondlayerisusedtodeterminetheseverityandmagnitudeofanymisalignmentacrossthecoupling.Severityvaluesrangebetween0and1,asinthepreviouscases,whilethemisalignmentoffsetamountisreportedinmils.Thefinalnetworkinthesecondlayerisdedicatedtovirtuallysensingmaximumshaftstressesandbearingreactionforcesfromthevibrationpatternsrecognizedatthesensorlocations.NeuralNetworkTrainingandConsultingTrainingofaneuralnetworkinvolvestheprocessofevaluatingtheweightsandthresholdsofthenumerousinterconnectionsbetweentheinputandoutputlayers.Thetrainingoftheneuralnetworkswasconductedutilizingbothunsupervisedandsupervisedprocedures.Theunsupervisedtrainingwasusedtogroupsimilarinputpatternstofacilitateprocessingofthelargenumberoftrainingpatternsused.ThesupervisedtrainingtechniqueisNEURALNETWORKCONFIGURATIONSUNBALANCEROW1SEVERITYMAGNITUDEPHASEVIRTUALSENSORSSHAFTSTRESSDISK1SHAFTSTRESSDISK2BEARING#1FORCEBEARINGnFORCEFig.5Dividedneuralnetworkarchitecture832/Vol.118,OCTOBER1996TransactionsoftheASMEDownloaded19Mar2009to43.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmusedforspecifyingwhattargetoutputsshouldresultfromaninputpattern.Theneuralnetworkvariables(weightsandthresholds)arethenself-adjustedtogeneratethattargetoutput.Thecombinationofthesetwotrainingprocedureswasutilizedduringthisprojectinordertoachievethedesirablenetworkaccuracy.Oncetheinternalstructuresofthenetworkswereconstructed,theyweretrainedbasedonexperimentalcasehistoriesandanalyticallyderivedinput/outputpairsderivedfromtherotordynamicscomputermodel.Developmentofthisdatabasecontainingtheneuralnetworkinput/outputtrainingpatternsrepresentedamajorportionofthispaperseffort.UnsupervisedTraining.Givenasetoftrainingpatterns,anunsupervisedlearningalgorithmwillself-organizetheinputpatternsintogroupsofpatternscalledclusters.BasedonaEuclideandistancesimilaritymeasure,alargenumberofpatternscanbeseparatedintoseveralclusters.Duringthetrainingprocess,networkweightsandthresholdsaremodifiedandclustercentersaredetermined.Thenumberofclustersformediscontrolledbyadjustingtheclustercenterradiusvalue.Afterthetrainingprocessisfinished,thenetworkcanbeconsultedwitheitherknownorunknowninputpatterns.SupervisedTraining.Supervisedlearning,asopposedtounsupervisedlearning,utilizespairsofassociatedinput/outputpatterns.ThistechniqueiscommonlyimplementedusingaGeneralizedDeltaRulenetworkarchitecturewithbackpropagationoferror.Duringthisprocedure,thenetworkarchitectureisspecifiedintermsofthenumberofinputandoutputnodes,aswellashiddenlayernodes.Thetrainingsetisthenusedtospecifywhattargetoutputsshouldresultfromaninputpattern,andthenetworkautomaticallylearnsthesetofparameters(weightsandthresholds)thatwillgeneratethisdesiredoutput.Inthislearningprocedure,thenetworklearnsasinglesetofnetworkparametersthatsatisfiesallthetraininginput/outputpairs.Thelearningisnotperfect,butisoptimumonthebasisoftheleastmeansquareerror.Intheconsultingmode,thenetworkisabletogeneralizeandgenerateappropriateoutputpatternsforanyinputpatternappliedtothenetwork.Thisattributeistheprincipaladvantagetoutilizingneuralnetworksinconditionmonitoringapplications.AnadditionalmathematicalenhancementusedinPhaseIthathelpsthenetworkarchitecturereducetheerrorassociatedwiththenumerousinput/outputpairsiscalledtheFunctionalLink.Inthisapproach,theinputpatternsareexpandedtoincludehigherordertermsassociatedwiththeoriginalinputvalues.Althoughthisenhancementisntalwaysnecessary,itoftenreducestheneedforhiddenlayersandresultsindramaticallyreducedtrainingtimes.SpecificNetworkTrainingandConsulting.Bothnetworkarchitecturesweretrainedwiththesame232input/outputtrainingpatternsdevisedfrombothexperimentalmeasurementsandthefiniteelementmodelanalysis.Thetrainingpatternsofthenetworkdatabasefocusedondiagnosingunbalanceconditions,misalignment,bearingreactionforces,andshaftstresses.Asanexample,experimentaldatawerecollectedfromtherigtotraintheneuralnetworktodistinguishthedifferencesbetweenmisalignmentandanunbalancecondition.Bothoftheseconditionsexhibitsimilarone/revvibrationcharacteristics.Phaseanglemeasurementswereobviouslyveryimportantforthenetworktomakethisdistinction.Amajorportionofthetrainingsetswerederivedinordertorecognizethedifferencesbetweensmallchangesinmagnitudeandphaseoftheapplied(seeded)unbalanceforces.Duetothefactthatthekeyphasersignalwasonlyaccuratetowithin10deg,changesinunbalanceforcesappliedevery22.5degwereusedasthebaseresolutionfromwhichtoidentifythelocationsoftheunbalance.Duetothefactthatunbalancemagnitudechangesof1.2g-in.(0.0425oz-in.)onlyproducedaminimalvibrationamplitudechangeof0.2mils,thisvaluewasusedasthebestresolutionpossiblewithinthepracticalconstraintsimposedbytherotorsystem.Therotordynamicsfinite-elementmodelwasexercisedextensivelywithnumerousunbalanceforceandshaftmisalignmentconditions.Theresultsfromeachrunofthefiniteelementmodel(takingapproximatelyhoureach)yieldedsteady-stateshaftbendingstressesandbearingreactionforcesforeachoftheseforcingconditions.Theseresultswerethenusedinconjunctionwiththemeasureddatatobuildthetrainingpatterndatabase.ComponentLifeAccumulationAfatiguelifealgorithmwasdevelopedthatutilizedthevirtuallysensedshaftstressesandbearingreactionforcesasabasisforcomputingfatigueinitiationlife.Thealgorithmestimatestheamountoftimetocrackinitiation,withcrackpropagationnotbeingconsidered.Neubersruleisusedtocomputethetruestressandstraininthecrackinitiationregion.Morrowsmethodisusedtoincorporatethemeanstresseffectsinthelifecalculations,whicharebasedonstrainamplitudeandthenumberofreversals.Minerslawcomputesthecumulativefatiguedamage.Strain-LifeEquation.Thelocalstrainapproachwasusedto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國自動售貨機行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 2025至2030中國膝關(guān)節(jié)骨性關(guān)節(jié)炎的粘液補充劑行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國脫硫脫硝行業(yè)市場深度研究及發(fā)展前景投資可行性分析報告
- 2025至2030中國脊柱植入物和裝置行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國聚氯乙烯電線行業(yè)市場占有率及投資前景評估規(guī)劃報告
- 八年級數(shù)學重點復習計劃
- 2025至2030中國網(wǎng)絡(luò)廣告行業(yè)營銷推廣模式及發(fā)展走向研究報告
- 2025至2030中國經(jīng)顱磁刺激儀(TMS)行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 從市場調(diào)研到定制化產(chǎn)品的成功案例分享
- 2025至2030中國組織提取袋行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 天津市和平區(qū)二十一中2025年英語七年級第二學期期末考試試題含答案
- 2025-2030中國轉(zhuǎn)輪除濕機行業(yè)前景動態(tài)及投資規(guī)劃分析報告
- 八年級上冊語文必背課文資料合集
- 針灸醫(yī)學的歷史回顧之古代名醫(yī)的針灸先例
- 【艾瑞咨詢】2024年中國健康管理行業(yè)研究報告494mb
- 年產(chǎn)xxx千件自行車配件項目可行性研究報告
- DZ/T 0261-2014滑坡崩塌泥石流災(zāi)害調(diào)查規(guī)范(1∶50 000)
- T/CQAP 3014-2024研究者發(fā)起的抗腫瘤體細胞臨床研究細胞制劑制備和質(zhì)量控制規(guī)范
- 初中體育教學中德育教育的現(xiàn)狀、問題與突破路徑探究
- 基層供銷社管理制度
- 農(nóng)業(yè)供應(yīng)鏈管理考試試題及答案
評論
0/150
提交評論