高考數(shù)學(xué)重要知識(shí)點(diǎn)分類(lèi)歸納總結(jié)_第1頁(yè)
高考數(shù)學(xué)重要知識(shí)點(diǎn)分類(lèi)歸納總結(jié)_第2頁(yè)
高考數(shù)學(xué)重要知識(shí)點(diǎn)分類(lèi)歸納總結(jié)_第3頁(yè)
高考數(shù)學(xué)重要知識(shí)點(diǎn)分類(lèi)歸納總結(jié)_第4頁(yè)
高考數(shù)學(xué)重要知識(shí)點(diǎn)分類(lèi)歸納總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩70頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高考數(shù)學(xué) 知識(shí)點(diǎn)歸納總結(jié)(文科)第一章 集合與函數(shù)概念【1.1.1】集合的含義與表示 (1)集合的概念 集合中的元素具有確定性、互異性和無(wú)序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實(shí)數(shù)集.(3)集合與元素間的關(guān)系對(duì)象與集合的關(guān)系是,或者,兩者必居其一.(4)集合的表示法 自然語(yǔ)言法:用文字?jǐn)⑹龅男问絹?lái)描述集合.列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合.描述法:|具有的性質(zhì),其中為集合的代表元素.圖示法:用數(shù)軸或韋恩圖來(lái)表示集合.(5)集合的分類(lèi)含有有限個(gè)元素的集合叫做有限集.含有無(wú)限個(gè)元素的集合叫做無(wú)限集.不含有任何元素的集合叫做空

2、集().【1.1.2】集合間的基本關(guān)系(6)子集、真子集、集合相等名稱(chēng)記號(hào)意義性質(zhì)示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA(7)已知集合有個(gè)元素,則它有個(gè)子集,它有個(gè)真子集,它有個(gè)非空子集,它有非空真子集.【1.1.3】集合的基本運(yùn)算(8)交集、并集、補(bǔ)集名稱(chēng)記號(hào)意義性質(zhì)示意圖交集且(1)(2)(3) 并集或(1)(2)(3) 補(bǔ)集1 2 【補(bǔ)充知識(shí)】含絕對(duì)值的不等式與一元二次不等式的解法(1)含

3、絕對(duì)值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來(lái)求解(2)一元二次不等式的解法判別式二次函數(shù)的圖象一元二次方程的根(其中無(wú)實(shí)根的解集或的解集1.2函數(shù)及其表示【1.2.1】函數(shù)的概念(1)函數(shù)的概念設(shè)、是兩個(gè)非空的數(shù)集,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)數(shù),在集合中都有唯一確定的數(shù)和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的一個(gè)函數(shù),記作函數(shù)的三要素:定義域、值域和對(duì)應(yīng)法則只有定義域相同,且對(duì)應(yīng)法則也相同的兩個(gè)函數(shù)才是同一函數(shù)(2)區(qū)間的概念及表示法設(shè)是兩個(gè)實(shí)數(shù),且,滿(mǎn)足的實(shí)數(shù)的集合叫做閉區(qū)間,記做;滿(mǎn)足的實(shí)數(shù)的集合叫做開(kāi)區(qū)間,記做;滿(mǎn)足,或的實(shí)數(shù)的

4、集合叫做半開(kāi)半閉區(qū)間,分別記做,;滿(mǎn)足的實(shí)數(shù)的集合分別記做注意:對(duì)于集合與區(qū)間,前者可以大于或等于,而后者必須(3)求函數(shù)的定義域時(shí),一般遵循以下原則:是整式時(shí),定義域是全體實(shí)數(shù)是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù)是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1中,零(負(fù))指數(shù)冪的底數(shù)不能為零若是由有限個(gè)基本初等函數(shù)的四則運(yùn)算而合成的函數(shù)時(shí),則其定義域一般是各基本初等函數(shù)的定義域的交集對(duì)于求復(fù)合函數(shù)定義域問(wèn)題,一般步驟是:若已知的定義域?yàn)椋鋸?fù)合函數(shù)的定義域應(yīng)由不等式解出對(duì)于含字母參數(shù)的函數(shù),求其定義域

5、,根據(jù)問(wèn)題具體情況需對(duì)字母參數(shù)進(jìn)行分類(lèi)討論由實(shí)際問(wèn)題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問(wèn)題的實(shí)際意義(4)求函數(shù)的值域或最值求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最?。ù螅?shù),這個(gè)數(shù)就是函數(shù)的最?。ù螅┲狄虼饲蠛瘮?shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同求函數(shù)值域與最值的常用方法: 觀察法:對(duì)于比較簡(jiǎn)單的函數(shù),我們可以通過(guò)觀察直接得到值域或最值配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值判別式法:若函數(shù)可以化成一個(gè)系數(shù)含有的關(guān)于的二次方程,則在時(shí),由于為實(shí)數(shù),故必須有,從而確

6、定函數(shù)的值域或最值不等式法:利用基本不等式確定函數(shù)的值域或最值換元法:通過(guò)變量代換達(dá)到化繁為簡(jiǎn)、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問(wèn)題轉(zhuǎn)化為三角函數(shù)的最值問(wèn)題反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值函數(shù)的單調(diào)性法【1.2.2】函數(shù)的表示法(5)函數(shù)的表示方法表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種 解析法:就是用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系列表法:就是列出表格來(lái)表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系圖象法:就是用圖象表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系(6)映射的概念設(shè)、是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則

7、,對(duì)于集合中任何一個(gè)元素,在集合中都有唯一的元素和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的映射,記作給定一個(gè)集合到集合的映射,且如果元素和元素對(duì)應(yīng),那么我們把元素叫做元素的象,元素叫做元素的原象1.3函數(shù)的基本性質(zhì)【1.3.1】單調(diào)性與最大(?。┲担?)函數(shù)的單調(diào)性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的單調(diào)性如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1 x2時(shí),都有f(x1)f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是增函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖 象上升為增)(4)利用復(fù)合函數(shù)如果對(duì)于屬

8、于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖象下降為減)(4)利用復(fù)合函數(shù)在公共定義域內(nèi),兩個(gè)增函數(shù)的和是增函數(shù),兩個(gè)減函數(shù)的和是減函數(shù),增函數(shù)減去一個(gè)減函數(shù)為增函數(shù),減函數(shù)減去一個(gè)增函數(shù)為減函數(shù)yxo對(duì)于復(fù)合函數(shù),令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減(2)打“”函數(shù)的圖象與性質(zhì)分別在、上為增函數(shù),分別在、上為減函數(shù)(3)最大(小)值定義 一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿(mǎn)足:(1)對(duì)于任意的,都有;

9、 (2)存在,使得那么,我們稱(chēng)是函數(shù) 的最大值,記作一般地,設(shè)函數(shù)的定義域?yàn)椋绻嬖趯?shí)數(shù)滿(mǎn)足:(1)對(duì)于任意的,都有;(2)存在,使得那么,我們稱(chēng)是函數(shù)的最小值,記作【1.3.2】奇偶性(4)函數(shù)的奇偶性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)叫做奇函數(shù)(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng))(2)利用圖象(圖象關(guān)于原點(diǎn)對(duì)稱(chēng))如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)叫做偶函數(shù)(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng))(2)利用圖象(圖象關(guān)于y軸對(duì)

10、稱(chēng))若函數(shù)為奇函數(shù),且在處有定義,則奇函數(shù)在軸兩側(cè)相對(duì)稱(chēng)的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對(duì)稱(chēng)的區(qū)間增減性相反在公共定義域內(nèi),兩個(gè)偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個(gè)偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個(gè)偶函數(shù)與一個(gè)奇函數(shù)的積(或商)是奇函數(shù)補(bǔ)充知識(shí)函數(shù)的圖象(1)作圖利用描點(diǎn)法作圖:確定函數(shù)的定義域; 化解函數(shù)解析式;討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性); 畫(huà)出函數(shù)的圖象利用基本函數(shù)圖象的變換作圖:要準(zhǔn)確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象平移變換伸縮變換 對(duì)稱(chēng)變換 (2)識(shí)圖對(duì)于給定函數(shù)的圖象,要能從圖象的

11、左右、上下分別范圍、變化趨勢(shì)、對(duì)稱(chēng)性等方面研究函數(shù)的定義域、值域、單調(diào)性、奇偶性,注意圖象與函數(shù)解析式中參數(shù)的關(guān)系(3)用圖 函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關(guān)系問(wèn)題提供了“形”的直觀性,它是探求解題途徑,獲得問(wèn)題結(jié)果的重要工具要重視數(shù)形結(jié)合解題的思想方法第二章 基本初等函數(shù)()2.1指數(shù)函數(shù)【2.1.1】指數(shù)與指數(shù)冪的運(yùn)算(1)根式的概念如果,且,那么叫做的次方根當(dāng)是奇數(shù)時(shí),的次方根用符號(hào)表示;當(dāng)是偶數(shù)時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)表示;0的次方根是0;負(fù)數(shù)沒(méi)有次方根式子叫做根式,這里叫做根指數(shù),叫做被開(kāi)方數(shù)當(dāng)為奇數(shù)時(shí),為任意實(shí)數(shù);當(dāng)為偶數(shù)時(shí),根式的性質(zhì):;當(dāng)為奇

12、數(shù)時(shí),;當(dāng)為偶數(shù)時(shí), (2)分?jǐn)?shù)指數(shù)冪的概念正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是:且0的正分?jǐn)?shù)指數(shù)冪等于0正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是:且0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義 注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù)(3)分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì) 【2.1.2】指數(shù)函數(shù)及其性質(zhì)(4)指數(shù)函數(shù)函數(shù)名稱(chēng)指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)圖象定義域值域過(guò)定點(diǎn)圖象過(guò)定點(diǎn),即當(dāng)時(shí),奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對(duì)圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低2.2對(duì)數(shù)函數(shù)【2.2.1】對(duì)數(shù)與對(duì)數(shù)運(yùn)算(1) 對(duì)數(shù)的定義 若,則叫做以為底的對(duì)數(shù),記作,其中叫做底數(shù),叫做真數(shù)負(fù)數(shù)和零沒(méi)有

13、對(duì)數(shù)對(duì)數(shù)式與指數(shù)式的互化:(2)幾個(gè)重要的對(duì)數(shù)恒等式,(3)常用對(duì)數(shù)與自然對(duì)數(shù)常用對(duì)數(shù):,即;自然對(duì)數(shù):,即(其中)(4)對(duì)數(shù)的運(yùn)算性質(zhì) 如果,那么加法: 減法:數(shù)乘: 換底公式:【2.2.2】對(duì)數(shù)函數(shù)及其性質(zhì)(5)對(duì)數(shù)函數(shù)函數(shù)名稱(chēng)對(duì)數(shù)函數(shù)定義函數(shù)且叫做對(duì)數(shù)函數(shù)圖象0101定義域值域過(guò)定點(diǎn)圖象過(guò)定點(diǎn),即當(dāng)時(shí),奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對(duì)圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高(6)反函數(shù)的概念設(shè)函數(shù)的定義域?yàn)?,值域?yàn)?,從式子中解出,得式子如果?duì)于在中的任何一個(gè)值,通過(guò)式子,在中都有唯一確定的值和它對(duì)應(yīng),那么式子表示是的函數(shù),函數(shù)

14、叫做函數(shù)的反函數(shù),記作,習(xí)慣上改寫(xiě)成(7)反函數(shù)的求法確定反函數(shù)的定義域,即原函數(shù)的值域;從原函數(shù)式中反解出;將改寫(xiě)成,并注明反函數(shù)的定義域(8)反函數(shù)的性質(zhì) 原函數(shù)與反函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域若在原函數(shù)的圖象上,則在反函數(shù)的圖象上一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù)2.3冪函數(shù)(1)冪函數(shù)的定義 一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù)(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無(wú)圖象冪函數(shù)是偶函數(shù)時(shí),圖象分布在第一、二象限(圖象關(guān)于軸對(duì)稱(chēng));是奇函數(shù)時(shí),圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對(duì)稱(chēng))

15、;是非奇非偶函數(shù)時(shí),圖象只分布在第一象限 過(guò)定點(diǎn):所有的冪函數(shù)在都有定義,并且圖象都通過(guò)點(diǎn) 單調(diào)性:如果,則冪函數(shù)的圖象過(guò)原點(diǎn),并且在上為增函數(shù)如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無(wú)限接近軸與軸奇偶性:當(dāng)為奇數(shù)時(shí),冪函數(shù)為奇函數(shù),當(dāng)為偶數(shù)時(shí),冪函數(shù)為偶函數(shù)當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時(shí),則是奇函數(shù),若為奇數(shù)為偶數(shù)時(shí),則是偶函數(shù),若為偶數(shù)為奇數(shù)時(shí),則是非奇非偶函數(shù)圖象特征:冪函數(shù),當(dāng)時(shí),若,其圖象在直線(xiàn)下方,若,其圖象在直線(xiàn)上方,當(dāng)時(shí),若,其圖象在直線(xiàn)上方,若,其圖象在直線(xiàn)下方補(bǔ)充知識(shí)二次函數(shù)(1)二次函數(shù)解析式的三種形式一般式:頂點(diǎn)式:兩根式:(2)求二次函數(shù)解析式的方法

16、已知三個(gè)點(diǎn)坐標(biāo)時(shí),宜用一般式已知拋物線(xiàn)的頂點(diǎn)坐標(biāo)或與對(duì)稱(chēng)軸有關(guān)或與最大(小)值有關(guān)時(shí),常使用頂點(diǎn)式若已知拋物線(xiàn)與軸有兩個(gè)交點(diǎn),且橫線(xiàn)坐標(biāo)已知時(shí),選用兩根式求更方便(3)二次函數(shù)圖象的性質(zhì)二次函數(shù)的圖象是一條拋物線(xiàn),對(duì)稱(chēng)軸方程為頂點(diǎn)坐標(biāo)是當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,函數(shù)在上遞減,在上遞增,當(dāng)時(shí),;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,函數(shù)在上遞增,在上遞減,當(dāng)時(shí),二次函數(shù)當(dāng)時(shí),圖象與軸有兩個(gè)交點(diǎn)(4)一元二次方程根的分布一元二次方程根的分布是二次函數(shù)中的重要內(nèi)容,這部分知識(shí)在初中代數(shù)中雖有所涉及,但尚不夠系統(tǒng)和完整,且解決的方法偏重于二次方程根的判別式和根與系數(shù)關(guān)系定理(韋達(dá)定理)的運(yùn)用,下面結(jié)合二次函數(shù)圖象的性質(zhì),

17、系統(tǒng)地來(lái)分析一元二次方程實(shí)根的分布 設(shè)一元二次方程的兩實(shí)根為,且令,從以下四個(gè)方面來(lái)分析此類(lèi)問(wèn)題:開(kāi)口方向: 對(duì)稱(chēng)軸位置: 判別式: 端點(diǎn)函數(shù)值符號(hào) kx1x2 x1x2k x1kx2 af(k)0 k1x1x2k2 有且僅有一個(gè)根x1(或x2)滿(mǎn)足k1x1(或x2)k2 f(k1)f(k2)0,并同時(shí)考慮f(k1)=0或f(k2)=0這兩種情況是否也符合 k1x1k2p1x2p2 此結(jié)論可直接由推出 (5)二次函數(shù)在閉區(qū)間上的最值 設(shè)在區(qū)間上的最大值為,最小值為,令()當(dāng)時(shí)(開(kāi)口向上)若,則 若,則 若,則xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)x

18、y0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,則 ,則xy0aOabx2-=pqf(p)f(q)()當(dāng)時(shí)(開(kāi)口向下)若,則 若,則 若,則xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,則 ,則xy0aOabx2-=pqf(p)f(q)xy0 L AB公理1作用:判斷直線(xiàn)是否在平面內(nèi)CBA(2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。符號(hào)表示為:A、B、C三點(diǎn)不共線(xiàn) = 有且只有一個(gè)平面,使A、B、C。公理2作用:確定一個(gè)平面的依據(jù)。(3)公理3:如果兩個(gè)不重合的

19、平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。PL符號(hào)表示為:P =L,且PL公理3作用:判定兩個(gè)平面是否相交的依據(jù)2.1.2 空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系1 空間的兩條直線(xiàn)有如下三種關(guān)系:共面直線(xiàn) 相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線(xiàn): 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。2 公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。符號(hào)表示為:設(shè)a、b、c是三條直線(xiàn)=acabcb強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。公理4作用:判斷空間兩條直線(xiàn)平行的依據(jù)。3 等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相

20、等或互補(bǔ)4 注意點(diǎn): a與b所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上; 兩條異面直線(xiàn)所成的角(0, ); 當(dāng)兩條異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作ab; 兩條直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形; 計(jì)算中,通常把兩條異面直線(xiàn)所成的角轉(zhuǎn)化為兩條相交直線(xiàn)所成的角。2.1.3 2.1.4 空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系1、直線(xiàn)與平面有三種位置關(guān)系:(1)直線(xiàn)在平面內(nèi) 有無(wú)數(shù)個(gè)公共點(diǎn)(2)直線(xiàn)與平面相交 有且只有一個(gè)公共點(diǎn)(3)直線(xiàn)在平面平行 沒(méi)有公共點(diǎn)指出:直線(xiàn)與平面相交或平行的情況統(tǒng)稱(chēng)為直線(xiàn)在平面外

21、,可用a 來(lái)表示a a=A a2.2.直線(xiàn)、平面平行的判定及其性質(zhì)2.2.1 直線(xiàn)與平面平行的判定1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。符號(hào)表示:a b = aab2.2.2 平面與平面平行的判定1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。符號(hào)表示:a b ab = P ab2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。2.2.3 2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直

22、線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。符號(hào)表示:aa ab= b作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。符號(hào)表示:= a ab = b作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行2.3直線(xiàn)、平面垂直的判定及其性質(zhì)2.3.1直線(xiàn)與平面垂直的判定1、定義如果直線(xiàn)L與平面內(nèi)的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面互相垂直,記作L,直線(xiàn)L叫做平面的垂線(xiàn),平面叫做直線(xiàn)L的垂面。如圖,直線(xiàn)與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。 L p 2、判定定理:一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂

23、直。注意點(diǎn): a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。2.3.2平面與平面垂直的判定1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形A 梭 l B 2、二面角的記法:二面角-l-或-AB-3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。2.3.3 2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。2性質(zhì)定理: 兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。本章知識(shí)結(jié)構(gòu)框圖平面(公理1、公理2、公理3、公理4)空間直線(xiàn)、平面的位

24、置關(guān)系平面與平面的位置關(guān)系直線(xiàn)與平面的位置關(guān)系第三章 直線(xiàn)與方程3.1直線(xiàn)的傾斜角和斜率3.1傾斜角和斜率1、直線(xiàn)的傾斜角的概念:當(dāng)直線(xiàn)l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線(xiàn)l向上方向之間所成的角叫做直線(xiàn)l的傾斜角.特別地,當(dāng)直線(xiàn)l與x軸平行或重合時(shí), 規(guī)定= 0.2、 傾斜角的取值范圍: 0180. 當(dāng)直線(xiàn)l與x軸垂直時(shí), = 90.3、直線(xiàn)的斜率:一條直線(xiàn)的傾斜角(90)的正切值叫做這條直線(xiàn)的斜率,斜率常用小寫(xiě)字母k表示,也就是 k = tan當(dāng)直線(xiàn)l與x軸平行或重合時(shí), =0, k = tan0=0;當(dāng)直線(xiàn)l與x軸垂直時(shí), = 90, k 不存在.由此可知, 一條直線(xiàn)l的傾斜

25、角一定存在,但是斜率k不一定存在.4、 直線(xiàn)的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1x2,用兩點(diǎn)的坐標(biāo)來(lái)表示直線(xiàn)P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2兩條直線(xiàn)的平行與垂直1、兩條直線(xiàn)都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意: 上面的等價(jià)是在兩條直線(xiàn)不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立即如果k1=k2, 那么一定有L1L22、兩條直線(xiàn)都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即3.2.1 直線(xiàn)的點(diǎn)斜

26、式方程1、 直線(xiàn)的點(diǎn)斜式方程:直線(xiàn)經(jīng)過(guò)點(diǎn),且斜率為 2、直線(xiàn)的斜截式方程:已知直線(xiàn)的斜率為,且與軸的交點(diǎn)為 3.2.2 直線(xiàn)的兩點(diǎn)式方程1、直線(xiàn)的兩點(diǎn)式方程:已知兩點(diǎn)其中 y-y1/y-y2=x-x1/x-x22、直線(xiàn)的截距式方程:已知直線(xiàn)與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中3.2.3 直線(xiàn)的一般式方程1、直線(xiàn)的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0)2、各種直線(xiàn)方程之間的互化。3.3直線(xiàn)的交點(diǎn)坐標(biāo)與距離公式3.3.1兩直線(xiàn)的交點(diǎn)坐標(biāo)1、給出例題:兩直線(xiàn)交點(diǎn)坐標(biāo)L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程組 得 x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,

27、2)3.3.2 兩點(diǎn)間距離兩點(diǎn)間的距離公式3.3.3 點(diǎn)到直線(xiàn)的距離公式1點(diǎn)到直線(xiàn)距離公式:點(diǎn)到直線(xiàn)的距離為:2、兩平行線(xiàn)間的距離公式:已知兩條平行線(xiàn)直線(xiàn)和的一般式方程為:,:,則與的距離為第四章 圓與方程4.1.1 圓的標(biāo)準(zhǔn)方程1、圓的標(biāo)準(zhǔn)方程:圓心為A(a,b),半徑為r的圓的方程2、點(diǎn)與圓的關(guān)系的判斷方法:(1),點(diǎn)在圓外 (2)=,點(diǎn)在圓上(3),點(diǎn)在圓內(nèi)4.1.2 圓的一般方程1、圓的一般方程: 2、圓的一般方程的特點(diǎn): (1)x2和y2的系數(shù)相同,不等于0沒(méi)有xy這樣的二次項(xiàng) (2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了(3)、與圓的標(biāo)準(zhǔn)

28、方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯。4.2.1 圓與圓的位置關(guān)系1、用點(diǎn)到直線(xiàn)的距離來(lái)判斷直線(xiàn)與圓的位置關(guān)系設(shè)直線(xiàn):,圓:,圓的半徑為,圓心到直線(xiàn)的距離為,則判別直線(xiàn)與圓的位置關(guān)系的依據(jù)有以下幾點(diǎn):(1)當(dāng)時(shí),直線(xiàn)與圓相離;(2)當(dāng)時(shí),直線(xiàn)與圓相切;(3)當(dāng)時(shí),直線(xiàn)與圓相交;4.2.2 圓與圓的位置關(guān)系兩圓的位置關(guān)系設(shè)兩圓的連心線(xiàn)長(zhǎng)為,則判別圓與圓的位置關(guān)系的依據(jù)有以下幾點(diǎn):(1)當(dāng)時(shí),圓與圓相離;(2)當(dāng)時(shí),圓與圓外切;(3)當(dāng)時(shí),圓與圓相交;(4)當(dāng)時(shí),圓與圓內(nèi)切;(5)當(dāng)時(shí),圓與圓內(nèi)含;4.2.3 直線(xiàn)與圓的方程的

29、應(yīng)用1、利用平面直角坐標(biāo)系解決直線(xiàn)與圓的位置關(guān)系;2、過(guò)程與方法用坐標(biāo)法解決幾何問(wèn)題的步驟:第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問(wèn)題中的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題;第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論4.3.1空間直角坐標(biāo)系1、點(diǎn)M對(duì)應(yīng)著唯一確定的有序?qū)崝?shù)組,、分別是P、Q、R在、軸上的坐標(biāo)2、有序?qū)崝?shù)組,對(duì)應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組來(lái)表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M,叫做點(diǎn)M的橫坐標(biāo),叫做點(diǎn)M的縱坐標(biāo),叫做點(diǎn)M的豎坐標(biāo)。4.3.2空間兩點(diǎn)間的距離公式1、空間中任意一

30、點(diǎn)到點(diǎn)之間的距離公式高中數(shù)學(xué) 必修3知識(shí)點(diǎn)第一章 算法初步1.1.1 算法的概念1、算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來(lái)解決的某一類(lèi)問(wèn)題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2. 算法的特點(diǎn):(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無(wú)限的.(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.(3)順序性與正確性:算法從初始步驟開(kāi)始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無(wú)誤

31、,才能完成問(wèn)題.(4)不唯一性:求解某一個(gè)問(wèn)題的解法不一定是唯一的,對(duì)于一個(gè)問(wèn)題可以有不同的算法.(5)普遍性:很多具體的問(wèn)題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過(guò)有限、事先設(shè)計(jì)好的步驟加以解決.1.1.2 程序框圖1、程序框圖基本概念:(一)程序構(gòu)圖的概念:程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形。一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明。(二)構(gòu)成程序框的圖形符號(hào)及其作用程序框名稱(chēng)功能起止框表示一個(gè)算法的起始和結(jié)束,是任何流程圖不可少的。輸入、輸出框表示一個(gè)算法輸入和輸出的信息,可用

32、在算法中任何需要輸入、輸出的位置。處理框賦值、計(jì)算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫(xiě)在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”。學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫(huà)程序框圖的規(guī)則如下:1、使用標(biāo)準(zhǔn)的圖形符號(hào)。2、框圖一般按從上到下、從左到右的方向畫(huà)。3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過(guò)一個(gè)退出點(diǎn)的唯一符號(hào)。4、判斷框分兩大類(lèi),一類(lèi)判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類(lèi)是多分支判斷,有幾種不同的結(jié)果。5、在圖形符號(hào)內(nèi)描述的語(yǔ)言

33、要非常簡(jiǎn)練清楚。(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開(kāi)的一種基本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線(xiàn)將程序框自上而下地連接起來(lái),按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)AB行B框所指定的操作。2、條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過(guò)對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A框或B框。無(wú)論P(yáng)條件是否成立,只能執(zhí)行A

34、框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開(kāi)始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱(chēng)重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類(lèi):(1)、一類(lèi)是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開(kāi)循環(huán)結(jié)構(gòu)。(2)、另一類(lèi)是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行

35、,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開(kāi)循環(huán)結(jié)構(gòu)。A成立不成立P不成立P成立A當(dāng)型循環(huán)結(jié)構(gòu) 直到型循環(huán)結(jié)構(gòu)注意:1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來(lái)判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計(jì)數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計(jì)數(shù)一次。1.2.1 輸入、輸出語(yǔ)句和賦值語(yǔ)句1、輸入語(yǔ)句圖形計(jì)算器格式INPUT“提示內(nèi)容”;變量INPUT “提示內(nèi)容”,變量(1)輸入語(yǔ)句的一般格式(2)

36、輸入語(yǔ)句的作用是實(shí)現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶(hù)輸入什么樣的信息,變量是指程序在運(yùn)行時(shí)其值是可以變化的量;(4)輸入語(yǔ)句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;(5)提示內(nèi)容與變量之間用分號(hào)“;”隔開(kāi),若輸入多個(gè)變量,變量與變量之間用逗號(hào)“,”隔開(kāi)。2、輸出語(yǔ)句PRINT“提示內(nèi)容”;表達(dá)式圖形計(jì)算器格式Disp “提示內(nèi)容”,變量(1)輸出語(yǔ)句的一般格式(2)輸出語(yǔ)句的作用是實(shí)現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶(hù)輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);(4)輸出語(yǔ)句可以輸出常量、變量或表達(dá)式的值以及字符。3、賦值語(yǔ)句變量表達(dá)式圖形計(jì)算器格式

37、表達(dá)式變量(1)賦值語(yǔ)句的一般格式(2)賦值語(yǔ)句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語(yǔ)句中的“”稱(chēng)作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;(4)賦值語(yǔ)句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對(duì)于一個(gè)變量可以多次賦值。注意:賦值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。賦值號(hào)左右不能對(duì)換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。不能利用賦值語(yǔ)句進(jìn)行代數(shù)式的演算。(如化簡(jiǎn)、因式分解、解方程等)賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。122條件語(yǔ)句1、條件語(yǔ)句

38、的一般格式有兩種:(1)IFTHENELSE語(yǔ)句;(2)IFTHEN語(yǔ)句。2、IFTHENELSE語(yǔ)句IFTHENELSE語(yǔ)句的一般格式為圖1,對(duì)應(yīng)的程序框圖為圖2。否是滿(mǎn)足條件?語(yǔ)句1語(yǔ)句2IF 條件 THEN語(yǔ)句1ELSE語(yǔ)句2END IF 圖1 圖2分析:在IFTHENELSE語(yǔ)句中,“條件”表示判斷的條件,“語(yǔ)句1”表示滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容;“語(yǔ)句2”表示不滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容;END IF表示條件語(yǔ)句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語(yǔ)句1;若條件不符合,則執(zhí)行ELSE后面的語(yǔ)句2。3、IFTHEN語(yǔ)句滿(mǎn)足條件?語(yǔ)句是否(圖

39、4)IFTHEN語(yǔ)句的一般格式為圖3,對(duì)應(yīng)的程序框圖為圖4。IF 條件 THEN語(yǔ)句END IF(圖3) 注意:“條件”表示判斷的條件;“語(yǔ)句”表示滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容,條件不滿(mǎn)足時(shí),結(jié)束程序;END IF表示條件語(yǔ)句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí)首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語(yǔ)句,若條件不符合則直接結(jié)束該條件語(yǔ)句,轉(zhuǎn)而執(zhí)行其它語(yǔ)句。123循環(huán)語(yǔ)句循環(huán)結(jié)構(gòu)是由循環(huán)語(yǔ)句來(lái)實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語(yǔ)言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語(yǔ)句結(jié)構(gòu)。即WHILE語(yǔ)句和UNTIL語(yǔ)句。1、WHILE語(yǔ)句滿(mǎn)足條件?循環(huán)體否是(1)WH

40、ILE語(yǔ)句的一般格式是 對(duì)應(yīng)的程序框圖是WHILE 條件循環(huán)體WEND(2)當(dāng)計(jì)算機(jī)遇到WHILE語(yǔ)句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過(guò)程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語(yǔ)句后,接著執(zhí)行WEND之后的語(yǔ)句。因此,當(dāng)型循環(huán)有時(shí)也稱(chēng)為“前測(cè)試型”循環(huán)。2、UNTIL語(yǔ)句(1)UNTIL語(yǔ)句的一般格式是 對(duì)應(yīng)的程序框圖是滿(mǎn)足條件?循環(huán)體是否DO循環(huán)體LOOP UNTIL 條件(2)直到型循環(huán)又稱(chēng)為“后測(cè)試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該

41、語(yǔ)句時(shí),先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿(mǎn)足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個(gè)過(guò)程反復(fù)進(jìn)行,直到某一次條件滿(mǎn)足時(shí),不再執(zhí)行循環(huán)體,跳到LOOP UNTIL語(yǔ)句后執(zhí)行其他語(yǔ)句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語(yǔ)句。分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)(1) 當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;在WHILE語(yǔ)句中,是當(dāng)條件滿(mǎn)足時(shí)執(zhí)行循環(huán)體,在UNTIL語(yǔ)句中,是當(dāng)條件不滿(mǎn)足時(shí)執(zhí)行循環(huán)1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商和一個(gè)余數(shù)

42、;(2):若0,則n為m,n的最大公約數(shù);若0,則用除數(shù)n除以余數(shù)得到一個(gè)商和一個(gè)余數(shù);(3):若0,則為m,n的最大公約數(shù);若0,則用除數(shù)除以余數(shù)得到一個(gè)商和一個(gè)余數(shù); 依次計(jì)算直至0,此時(shí)所得到的即為所求的最大公約數(shù)。2、更相減損術(shù)我國(guó)早期也有求最大公約數(shù)問(wèn)題的算法,就是更相減損術(shù)。在九章算術(shù)中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到

43、所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2 用更相減損術(shù)求98與63的最大公約數(shù).分析:(略) 3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。(2)從結(jié)果體現(xiàn)形式來(lái)看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到1.3.2秦九韶算法與排序1、秦九韶算法概念:f(x)=anxn+an-1xn-1+.+a1x+a0求值問(wèn)題f(x)=anxn+an-1xn-1+.+a1x+a0=( anxn-1+

44、an-1xn-2+.+a1)x+a0 =( anxn-2+an-1xn-3+.+a2)x+a1)x+a0 =.=(.( anx+an-1)x+an-2)x+.+a1)x+a0求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即v2=v1x+an-2 v3=v2x+an-3 . vn=vn-1x+a0這樣,把n次多項(xiàng)式的求值問(wèn)題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問(wèn)題。2、兩種排序方法:直接插入排序和冒泡排序1、直接插入排序基本思想:插入排序的思想就是讀一個(gè),排一個(gè)。將第個(gè)數(shù)放入數(shù)組的第個(gè)元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在

45、從大到小的排列中應(yīng)處的位置將該位置以及以后的元素向后推移一個(gè)位置,將讀入的新數(shù)填入空出的位置中(由于算法簡(jiǎn)單,可以舉例說(shuō)明)2、冒泡排序基本思想:依次比較相鄰的兩個(gè)數(shù),把大的放前面,小的放后面.即首先比較第1個(gè)數(shù)和第2個(gè)數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個(gè)數(shù)和第3個(gè)數(shù).直到比較最后兩個(gè)數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過(guò)程,仍從第1個(gè)數(shù)開(kāi)始,到最后第2個(gè)數(shù). 由于在排序過(guò)程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序. 1.3.3進(jìn)位制1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值??墒褂脭?shù)字符號(hào)的個(gè)數(shù)稱(chēng)為基數(shù),基數(shù)為n,即可稱(chēng)n進(jìn)位制,簡(jiǎn)稱(chēng)n進(jìn)制。現(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來(lái)表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。一般地,若k是一個(gè)大于一的整數(shù),那么以k為基數(shù)的k進(jìn)制可以表示為:,而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來(lái)表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)第二章 統(tǒng)計(jì)2.1.1簡(jiǎn)單隨機(jī)抽樣1總體和樣本 在統(tǒng)計(jì)學(xué)中 , 把研究對(duì)象的全體叫做總體把每個(gè)研究對(duì)象叫做個(gè)體把總體中個(gè)體的總數(shù)叫做總體容量為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論