道路工程設計外文資料_第1頁
道路工程設計外文資料_第2頁
道路工程設計外文資料_第3頁
道路工程設計外文資料_第4頁
道路工程設計外文資料_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、 外文科技文獻翻譯橋梁裂縫產(chǎn)生原因淺析近年來,我省交通基礎建設得到迅猛發(fā)展,各地興建了大量的混凝土橋梁。在橋梁建造和使用過程中,有關(guān)因出現(xiàn)裂縫而影響工程質(zhì)量甚至導橋梁垮塌的報道屢見不鮮?;炷灵_裂可以說是“常發(fā)病”和“多發(fā)病”,經(jīng)常困擾著橋梁工程技術(shù)人員。其實,如果采取一定的設計和施工措施,很多裂縫是可以克服和控制的。為了進一步加強對混凝土橋梁裂縫的認識,盡量避免工程中出現(xiàn)危害較大的裂縫,本文盡可能對混凝土橋梁裂縫的種類和產(chǎn)生的原因作較全面的分析、總結(jié),以方便設計、施工找出控制裂縫的可行辦法,達到防范于未然的作用。 混凝土橋梁裂縫種類、成因?qū)嶋H上,混凝土結(jié)構(gòu)裂縫的成因復雜而繁多,甚至多種因素相

2、互影響,但每一條裂縫均有其產(chǎn)生的一種或幾種主要原因。混凝土橋梁裂縫的種類,就其產(chǎn)生的原因,大致可劃分如下幾種: 一、荷載引起的裂縫混凝土橋梁在常規(guī)靜、動荷載及次應力下產(chǎn)生的裂縫稱荷載裂縫,歸納起來主要有直接應力裂縫、次應力裂縫兩種。 直接應力裂縫是指外荷載引起的直接應力產(chǎn)生的裂縫。裂縫產(chǎn)生的原因有:1、設計計算階段,結(jié)構(gòu)計算時不計算或部分漏算;計算模型不合理;結(jié)構(gòu)受力假設與實際受力不符;荷載少算或漏算;內(nèi)力與配筋計算錯誤;結(jié)構(gòu)安全系數(shù)不夠。結(jié)構(gòu)設計時不考慮施工的可能性;設計斷面不足;鋼筋設置偏少或布置錯誤;結(jié)構(gòu)剛度不足;構(gòu)造處理不當;設計圖紙交代不清等。2、施工階段,不加限制地堆放施工機具、材

3、料;不了解預制結(jié)構(gòu)結(jié)構(gòu)受力特點,隨意翻身、起吊、運輸、安裝;不按設計圖紙施工,擅自更改結(jié)構(gòu)施工順序,改變結(jié)構(gòu)受力模式;不對結(jié)構(gòu)做機器振動下的疲勞強度驗算等。3、使用階段,超出設計載荷的重型車輛過橋;受車輛、船舶的接觸、撞擊;發(fā)生大風、大雪、地震、爆炸等。次應力裂縫是指由外荷載引起的次生應力產(chǎn)生裂縫。裂縫產(chǎn)生的原因有:1、在設計外荷載作用下,由于結(jié)構(gòu)物的實際工作狀態(tài)同常規(guī)計算有出入或計算不考慮,從而在某些部位引起次應力導致結(jié)構(gòu)開裂。例如兩鉸拱橋拱腳設計時常采用布置“X”形鋼筋、同時削減該處斷面尺寸的辦法設計鉸,理論計算該處不會存在彎矩,但實際該鉸仍然能夠抗彎,以至出現(xiàn)裂縫而導致鋼筋銹蝕。2、橋梁

4、結(jié)構(gòu)中經(jīng)常需要鑿槽、開洞、設置牛腿等,在常規(guī)計算中難以用準確的圖式進行模擬計算,一般根據(jù)經(jīng)驗設置受力鋼筋。研究表明,受力構(gòu)件挖孔后,力流將產(chǎn)生繞射現(xiàn)象,在孔洞附近密集,產(chǎn)生巨大的應力集中。在長跨預應力連續(xù)梁中,經(jīng)常在跨內(nèi)根據(jù)截面內(nèi)力需要截斷鋼束,設置錨頭,而在錨固斷面附近經(jīng)??梢钥吹搅芽p。因此,若處理不當,在這些結(jié)構(gòu)的轉(zhuǎn)角處或構(gòu)件形狀突變處、受力鋼筋截斷處容易出現(xiàn)裂縫。實際工程中,次應力裂縫是產(chǎn)生荷載裂縫的最常見原因。次應力裂縫多屬張拉、劈裂、剪切性質(zhì)。次應力裂縫也是由荷載引起,僅是按常規(guī)一般不計算,但隨著現(xiàn)代計算手段的不斷完善,次應力裂縫也是可以做到合理驗算的。例如現(xiàn)在對預應力、徐變等產(chǎn)生的

5、二次應力,不少平面桿系有限元程序均可正確計算,但在40年前卻比較困難。在設計上,應注意避免結(jié)構(gòu)突變(或斷面突變),當不能回避時,應做局部處理,如轉(zhuǎn)角處做圓角,突變處做成漸變過渡,同時加強構(gòu)造配筋,轉(zhuǎn)角處增配斜向鋼筋,對于較大孔洞有條件時可在周邊設置護邊角鋼。荷載裂縫特征依荷載不同而異呈現(xiàn)不同的特點。這類裂縫多出現(xiàn)在受拉區(qū)、受剪區(qū)或振動嚴重部位。但必須指出,如果受壓區(qū)出現(xiàn)起皮或有沿受壓方向的短裂縫,往往是結(jié)構(gòu)達到承載力極限的標志,是結(jié)構(gòu)破壞的前兆,其原因往往是截面尺寸偏小。根據(jù)結(jié)構(gòu)不同受力方式,產(chǎn)生的裂縫特征如下:1、中心受拉。裂縫貫穿構(gòu)件橫截面,間距大體相等,且垂直于受力方向。采用螺紋鋼筋時,

6、裂縫之間出現(xiàn)位于鋼筋附近的次裂縫。2、中心受壓。沿構(gòu)件出現(xiàn)平行于受力方向的短而密的平行裂縫。3、受彎。彎矩最大截面附近從受拉區(qū)邊沿開始出現(xiàn)與受拉方向垂直的裂縫,并逐漸向中和軸方向發(fā)展。采用螺紋鋼筋時,裂縫間可見較短的次裂縫。當結(jié)構(gòu)配筋較少時,裂縫少而寬,結(jié)構(gòu)可能發(fā)生脆性破壞。4、大偏心受壓。大偏心受壓和受拉區(qū)配筋較少的小偏心受壓構(gòu)件,類似于受彎構(gòu)件。5、小偏心受壓。小偏心受壓和受拉區(qū)配筋較多的大偏心受壓構(gòu)件,類似于中心受壓構(gòu)件。6、受剪。當箍筋太密時發(fā)生斜壓破壞,沿梁端腹部出現(xiàn)大于45方向的斜裂縫;當箍筋適當時發(fā)生剪壓破壞,沿梁端中下部出現(xiàn)約45方向相互平行的斜裂縫。7、受扭。構(gòu)件一側(cè)腹部先出

7、現(xiàn)多條約45方向斜裂縫,并向相鄰面以螺旋方向展開。8、受沖切。沿柱頭板內(nèi)四側(cè)發(fā)生約45方向斜面拉裂,形成沖切面。9、局部受壓。在局部受壓區(qū)出現(xiàn)與壓力方向大致平行的多條短裂縫。 二、溫度變化引起的裂縫混凝土具有熱脹冷縮性質(zhì),當外部環(huán)境或結(jié)構(gòu)內(nèi)部溫度發(fā)生變化,混凝土將發(fā)生變形,若變形遭到約束,則在結(jié)構(gòu)內(nèi)將產(chǎn)生應力,當應力超過混凝土抗拉強度時即產(chǎn)生溫度裂縫。在某些大跨徑橋梁中,溫度應力可以達到甚至超出活載應力。溫度裂縫區(qū)別其它裂縫最主要特征是將隨溫度變化而擴張或合攏。引起溫度變化主要因素有:1、年溫差。一年中四季溫度不斷變化,但變化相對緩慢,對橋梁結(jié)構(gòu)的影響主要是導致橋梁的縱向位移,一般可通過橋面伸

8、縮縫、支座位移或設置柔性墩等構(gòu)造措施相協(xié)調(diào),只有結(jié)構(gòu)的位移受到限制時才會引起溫度裂縫,例如拱橋、剛架橋等。我國年溫差一般以一月和七月月平均溫度的作為變化幅度??紤]到混凝土的蠕變特性,年溫差內(nèi)力計算時混凝土彈性模量應考慮折減。2、日照。橋面板、主梁或橋墩側(cè)面受太陽曝曬后,溫度明顯高于其它部位,溫度梯度呈非線形分布。由于受到自身約束作用,導致局部拉應力較大,出現(xiàn)裂縫。日照和下述驟然降溫是導致結(jié)構(gòu)溫度裂縫的最常見原因。3、驟然降溫。突降大雨、冷空氣侵襲、日落等可導致結(jié)構(gòu)外表面溫度突然下降,但因內(nèi)部溫度變化相對較慢而產(chǎn)生溫度梯度。日照和驟然降溫內(nèi)力計算時可采用設計規(guī)范或參考實橋資料進行,混凝土彈性模量

9、不考慮折減。4、水化熱。出現(xiàn)在施工過程中,大體積混凝土(厚度超過2.0米)澆筑之后由于水泥水化放熱,致使內(nèi)部溫度很高,內(nèi)外溫差太大,致使表面出現(xiàn)裂縫。施工中應根據(jù)實際情況,盡量選擇水化熱低的水泥品種,限制水泥單位用量,減少骨料入模溫度,降低內(nèi)外溫差,并緩慢降溫,必要時可采用循環(huán)冷卻系統(tǒng)進行內(nèi)部散熱,或采用薄層連續(xù)澆筑以加快散熱。5、蒸汽養(yǎng)護或冬季施工時施工措施不當,混凝土驟冷驟熱,內(nèi)外溫度不均,易出現(xiàn)裂縫。6、預制T梁之間橫隔板安裝時,支座預埋鋼板與調(diào)平鋼板焊接時,若焊接措施不當,鐵件附近混凝土容易燒傷開裂。采用電熱張拉法張拉預應力構(gòu)件時,預應力鋼材溫度可升高至350,混凝土構(gòu)件也容易開裂。試

10、驗研究表明,由火災等原因引起高溫燒傷的混凝土強度隨溫度的升高而明顯降低,鋼筋與混凝土的粘結(jié)力隨之下降,混凝土溫度達到300后抗拉強度下降50%,抗壓強度下降60%,光圓鋼筋與混凝土的粘結(jié)力下降80%;由于受熱,混凝土體內(nèi)游離水大量蒸發(fā)也可產(chǎn)生急劇收縮。三、收縮引起的裂縫在實際工程中,混凝土因收縮所引起的裂縫是最常見的。在混凝土收縮種類中,塑性收縮和縮水收縮(干縮)是發(fā)生混凝土體積變形的主要原因,另外還有自生收縮和炭化收縮。塑性收縮:發(fā)生在施工過程中、混凝土澆筑后45小時左右,此時水泥水化反應激烈,分子鏈逐漸形成,出現(xiàn)泌水和水分急劇蒸發(fā),混凝土失水收縮,同時骨料因自重下沉,因此時混凝土尚未硬化,

11、稱為塑性收縮。塑性收縮所產(chǎn)生量級很大,可達1%左右。在骨料下沉過程中若受到鋼筋阻擋,便形成沿鋼筋方向的裂縫。在構(gòu)件豎向變截面處如T梁、箱梁腹板與頂?shù)装褰唤犹帲蛴不俺翆嵅痪鶆驅(qū)l(fā)生表面的順腹板方向裂縫。為減小混凝土塑性收縮,施工時應控制水灰比,避免過長時間的攪拌,下料不宜太快,振搗要密實,豎向變截面處宜分層澆筑??s水收縮(干縮):混凝土結(jié)硬以后,隨著表層水分逐步蒸發(fā),濕度逐步降低,混凝土體積減小,稱為縮水收縮(干縮)。因混凝土表層水分損失快,內(nèi)部損失慢,因此產(chǎn)生表面收縮大、內(nèi)部收縮小的不均勻收縮,表面收縮變形受到內(nèi)部混凝土的約束,致使表面混凝土承受拉力,當表面混凝土承受拉力超過其抗拉強度時,

12、便產(chǎn)生收縮裂縫?;炷劣不笫湛s主要就是縮水收縮。如配筋率較大的構(gòu)件(超過3%),鋼筋對混凝土收縮的約束比較明顯,混凝土表面容易出現(xiàn)龜裂裂紋。自生收縮:自生收縮是混凝土在硬化過程中,水泥與水發(fā)生水化反應,這種收縮與外界濕度無關(guān),且可以是正的(即收縮,如普通硅酸鹽水泥混凝土),也可以是負的(即膨脹,如礦渣水泥混凝土與粉煤灰水泥混凝土)。炭化收縮。大氣中的二氧化碳與水泥的水化物發(fā)生化學反應引起的收縮變形。炭化收縮只有在濕度50%左右才能發(fā)生,且隨二氧化碳的濃度的增加而加快。炭化收縮一般不做計算?;炷潦湛s裂縫的特點是大部分屬表面裂縫,裂縫寬度較細,且縱橫交錯,成龜裂狀,形狀沒有任何規(guī)律。 研究表明

13、,影響混凝土收縮裂縫的主要因素有:1、水泥品種、標號及用量。礦渣水泥、快硬水泥、低熱水泥混凝土收縮性較高,普通水泥、火山灰水泥、礬土水泥混凝土收縮性較低。另外水泥標號越低、單位體積用量越大、磨細度越大,則混凝土收縮越大,且發(fā)生收縮時間越長。例如,為了提高混凝土的強度,施工時經(jīng)常采用強行增加水泥用量的做法,結(jié)果收縮應力明顯加大。2、骨料品種。骨料中石英、石灰?guī)r、白云巖、花崗巖、長石等吸水率較小、收縮性較低;而砂巖、板巖、角閃巖等吸水率較大、收縮性較高。另外骨料粒徑大收縮小,含水量大收縮越大。3、水灰比。用水量越大,水灰比越高,混凝土收縮越大。4、外摻劑。外摻劑保水性越好,則混凝土收縮越小。5、養(yǎng)

14、護方法。良好的養(yǎng)護可加速混凝土的水化反應,獲得較高的混凝土強度。養(yǎng)護時保持濕度越高、氣溫越低、養(yǎng)護時間越長,則混凝土收縮越小。蒸汽養(yǎng)護方式比自然養(yǎng)護方式混凝土收縮要小。6、外界環(huán)境。大氣中濕度小、空氣干燥、溫度高、風速大,則混凝土水分蒸發(fā)快,混凝土收縮越快。7、振搗方式及時間。機械振搗方式比手工搗固方式混凝土收縮性要小。振搗時間應根據(jù)機械性能決定,一般以515s/次為宜。時間太短,振搗不密實,形成混凝土強度不足或不均勻;時間太長,造成分層,粗骨料沉入底層,細骨料留在上層,強度不均勻,上層易發(fā)生收縮裂縫。 對于溫度和收縮引起的裂縫,增配構(gòu)造鋼筋可明顯提高混凝土的抗裂性,尤其是薄壁結(jié)構(gòu)(壁厚206

15、0cm)。構(gòu)造上配筋宜優(yōu)先采用小直徑鋼筋(814)、小間距布置(1015cm),全截面構(gòu)造配筋率不宜低于0.3%,一般可采用0.3%0.5%。四、地基礎變形引起的裂縫由于基礎豎向不均勻沉降或水平方向位移,使結(jié)構(gòu)中產(chǎn)生附加應力,超出混凝土結(jié)構(gòu)的抗拉能力,導致結(jié)構(gòu)開裂?;A不均勻沉降的主要原因有:1、地質(zhì)勘察精度不夠、試驗資料不準。在沒有充分掌握地質(zhì)情況就設計、施工,這是造成地基不均勻沉降的主要原因。比如丘陵區(qū)或山嶺區(qū)橋梁,勘察時鉆孔間距太遠,而地基巖面起伏又大,勘察報告不能充分反映實際地質(zhì)情況。2、地基地質(zhì)差異太大。建造在山區(qū)溝谷的橋梁,河溝處的地質(zhì)與山坡處變化較大,河溝中甚至存在軟弱地基,地基

16、土由于不同壓縮性引起不均勻沉降。3、結(jié)構(gòu)荷載差異太大。在地質(zhì)情況比較一致條件下,各部分基礎荷載差異太大時,有可能引起不均勻沉降,例如高填土箱形涵洞中部比兩邊的荷載要大,中部的沉降就要比兩邊大,箱涵可能開裂。4、結(jié)構(gòu)基礎類型差別大。同一聯(lián)橋梁中,混合使用不同基礎如擴大基礎和樁基礎,或同時采用樁基礎但樁徑或樁長差別大時,或同時采用擴大基礎但基底標高差異大時,也可能引起地基不均勻沉降。5、分期建造的基礎。在原有橋梁基礎附近新建橋梁時,如分期修建的高速公路左右半幅橋梁,新建橋梁荷載或基礎處理時引起地基土重新固結(jié),均可能對原有橋梁基礎造成較大沉降。6、地基凍脹。在低于零度的條件下含水率較高的地基土因冰凍

17、膨脹;一旦溫度回升,凍土融化,地基下沉。因此地基的冰凍或融化均可造成不均勻沉降。7、橋梁基礎置于滑坡體、溶洞或活動斷層等不良地質(zhì)時,可能造成不均勻沉降。8、橋梁建成以后,原有地基條件變化。大多數(shù)天然地基和人工地基浸水后,尤其是素填土、黃土、膨脹土等特殊地基土,土體強度遇水下降,壓縮變形加大。在軟土地基中,因人工抽水或干旱季節(jié)導致地下水位下降,地基土層重新固結(jié)下沉,同時對基礎的上浮力減小,負摩阻力增加,基礎受荷加大。有些橋梁基礎埋置過淺,受洪水沖刷、淘挖,基礎可能位移。地面荷載條件的變化,如橋梁附近因塌方、山體滑坡等原因堆置大量廢方、砂石等,橋址范圍土層可能受壓縮再次變形。因此,使用期間原有地基

18、條件變化均可能造成不均勻沉降。對于拱橋等產(chǎn)生水平推力的結(jié)構(gòu)物,對地質(zhì)情況掌握不夠、設計不合理和施工時破壞了原有地質(zhì)條件是產(chǎn)生水平位移裂縫的主要原因。五、鋼筋銹蝕引起的裂縫由于混凝土質(zhì)量較差或保護層厚度不足,混凝土保護層受二氧化碳侵蝕炭化至鋼筋表面,使鋼筋周圍混凝土堿度降低,或由于氯化物介入,鋼筋周圍氯離子含量較高,均可引起鋼筋表面氧化膜破壞,鋼筋中鐵離子與侵入到混凝土中的氧氣和水分發(fā)生銹蝕反應,其銹蝕物氫氧化鐵體積比原來增長約24倍,從而對周圍混凝土產(chǎn)生膨脹應力,導致保護層混凝土開裂、剝離,沿鋼筋縱向產(chǎn)生裂縫,并有銹跡滲到混凝土表面。由于銹蝕,使得鋼筋有效斷面面積減小,鋼筋與混凝土握裹力削弱,

19、結(jié)構(gòu)承載力下降,并將誘發(fā)其它形式的裂縫,加劇鋼筋銹蝕,導致結(jié)構(gòu)破壞。要防止鋼筋銹蝕,設計時應根據(jù)規(guī)范要求控制裂縫寬度、采用足夠的保護層厚度(當然保護層亦不能太厚,否則構(gòu)件有效高度減小,受力時將加大裂縫寬度);施工時應控制混凝土的水灰比,加強振搗,保證混凝土的密實性,防止氧氣侵入,同時嚴格控制含氯鹽的外加劑用量,沿海地區(qū)或其它存在腐蝕性強的空氣、地下水地區(qū)尤其應慎重。六、凍脹引起的裂縫大氣氣溫低于零度時,吸水飽和的混凝土出現(xiàn)冰凍,游離的水轉(zhuǎn)變成冰,體積膨脹9%,因而混凝土產(chǎn)生膨脹應力;同時混凝土凝膠孔中的過冷水(結(jié)冰溫度在-78度以下)在微觀結(jié)構(gòu)中遷移和重分布引起滲透壓,使混凝土中膨脹力加大,混

20、凝土強度降低,并導致裂縫出現(xiàn)。尤其是混凝土初凝時受凍最嚴重,成齡后混凝土強度損失可達30%50%。冬季施工時對預應力孔道灌漿后若不采取保溫措施也可能發(fā)生沿管道方向的凍脹裂縫。溫度低于零度和混凝土吸水飽和是發(fā)生凍脹破壞的必要條件。當混凝土中骨料空隙多、吸水性強;骨料中含泥土等雜質(zhì)過多;混凝土水灰比偏大、振搗不密實;養(yǎng)護不力使混凝土早期受凍等,均可能導致混凝土凍脹裂縫。冬季施工時,采用電氣加熱法、暖棚法、地下蓄熱法、蒸汽加熱法養(yǎng)護以及在混凝土拌和水中摻入防凍劑(但氯鹽不宜使用),可保證混凝土在低溫或負溫條件下硬化。七、施工材料質(zhì)量引起的裂縫混凝土主要由水泥、砂、骨料、拌和水及外加劑組成。配置混凝土

21、所采用材料質(zhì)量不合格,可能導致結(jié)構(gòu)出現(xiàn)裂縫。 1、水泥(1)、水泥安定性不合格,水泥中游離的氧化鈣含量超標。氧化鈣在凝結(jié)過程中水化很慢,在水泥混凝土凝結(jié)后仍然繼續(xù)起水化作用,可破壞已硬化的水泥石,使混凝土抗拉強度下降。(2)、水泥出廠時強度不足,水泥受潮或過期,可能使混凝土強度不足,從而導致混凝土開裂。(3)、當水泥含堿量較高(例如超過0.6%),同時又使用含有堿活性的骨料,可能導致堿骨料反應。 2、砂、石骨料砂石的粒徑、級配、雜質(zhì)含量。砂石粒徑太小、級配不良、空隙率大,將導致水泥和拌和水用量加大,影響混凝土的強度,使混凝土收縮加大,如果使用超出規(guī)定的特細砂,后果更嚴重。砂石中云母的含量較高,

22、將削弱水泥與骨料的粘結(jié)力,降低混凝土強度。砂石中含泥量高,不僅將造成水泥和拌和水用量加大,而且還降低混凝土強度和抗凍性、抗?jié)B性。砂石中有機質(zhì)和輕物質(zhì)過多,將延緩水泥的硬化過程,降低混凝土強度,特別是早期強度。砂石中硫化物可與水泥中的鋁酸三鈣發(fā)生化學反應,體積膨脹2.5倍。3、拌和水及外加劑拌和水或外加劑中氯化物等雜質(zhì)含量較高時對鋼筋銹蝕有較大影響。采用海水或含堿泉水拌制混凝土,或采用含堿的外加劑,可能對堿骨料反應有影響。八、施工工藝質(zhì)量引起的裂縫在混凝土結(jié)構(gòu)澆筑、構(gòu)件制作、起模、運輸、堆放、拼裝及吊裝過程中,若施工工藝不合理、施工質(zhì)量低劣,容易產(chǎn)生縱向的、橫向的、斜向的、豎向的、水平的、表面的

23、、深進的和貫穿的各種裂縫,特別是細長薄壁結(jié)構(gòu)更容易出現(xiàn)。裂縫出現(xiàn)的部位和走向、裂縫寬度因產(chǎn)生的原因而異,比較典型常見的有:1、混凝土保護層過厚,或亂踩已綁扎的上層鋼筋,使承受負彎矩的受力筋保護層加厚,導致構(gòu)件的有效高度減小,形成與受力鋼筋垂直方向的裂縫。2、混凝土振搗不密實、不均勻,出現(xiàn)蜂窩、麻面、空洞,導致鋼筋銹蝕或其它荷載裂縫的起源點。3、混凝土澆筑過快,混凝土流動性較低,在硬化前因混凝土沉實不足,硬化后沉實過大,容易在澆筑數(shù)小時后發(fā)生裂縫,既塑性收縮裂縫。4、混凝土攪拌、運輸時間過長,使水分蒸發(fā)過多,引起混凝土塌落度過低,使得在混凝土體積上出現(xiàn)不規(guī)則的收縮裂縫。5、混凝土初期養(yǎng)護時急劇干

24、燥,使得混凝土與大氣接觸的表面上出現(xiàn)不規(guī)則的收縮裂縫。6、用泵送混凝土施工時,為保證混凝土的流動性,增加水和水泥用量,或因其它原因加大了水灰比,導致混凝土凝結(jié)硬化時收縮量增加,使得混凝土體積上出現(xiàn)不規(guī)則裂縫。7、混凝土分層或分段澆筑時,接頭部位處理不好,易在新舊混凝土和施工縫之間出現(xiàn)裂縫。如混凝土分層澆筑時,后澆混凝土因停電、下雨等原因未能在前澆混凝土初凝前澆筑,引起層面之間的水平裂縫;采用分段現(xiàn)澆時,先澆混凝土接觸面鑿毛、清洗不好,新舊混凝土之間粘結(jié)力小,或后澆混凝土養(yǎng)護不到位,導致混凝土收縮而引起裂縫。8、混凝土早期受凍,使構(gòu)件表面出現(xiàn)裂紋,或局部剝落,或脫模后出現(xiàn)空鼓現(xiàn)象。9、施工時模板

25、剛度不足,在澆筑混凝土時,由于側(cè)向壓力的作用使得模板變形,產(chǎn)生與模板變形一致的裂縫。10、施工時拆模過早,混凝土強度不足,使得構(gòu)件在自重或施工荷載作用下產(chǎn)生裂縫。11、施工前對支架壓實不足或支架剛度不足,澆筑混凝土后支架不均勻下沉,導致混凝土出現(xiàn)裂縫。12、裝配式結(jié)構(gòu),在構(gòu)件運輸、堆放時,支承墊木不在一條垂直線上,或懸臂過長,或運輸過程中劇烈顛撞;吊裝時吊點位置不當,T梁等側(cè)向剛度較小的構(gòu)件,側(cè)向無可靠的加固措施等,均可能產(chǎn)生裂縫。13、安裝順序不正確,對產(chǎn)生的后果認識不足,導致產(chǎn)生裂縫。如鋼筋混凝土連續(xù)梁滿堂支架現(xiàn)澆施工時,鋼筋混凝土墻式護欄若與主梁同時澆筑,拆架后墻式護欄往往產(chǎn)生裂縫;拆架

26、后再澆筑護欄,則裂縫不易出現(xiàn)。14、施工質(zhì)量控制差。任意套用混凝土配合比,水、砂石、水泥材料計量不準,結(jié)果造成混凝土強度不足和其他性能(和易性、密實度)下降,導致結(jié)構(gòu)開裂。最后總結(jié):一座橋梁從建成到使用,牽涉到設計、施工、監(jiān)理、運營管理等各個方面。由上述可知,設計疏漏、施工低劣、監(jiān)理不力,均可能使混凝土橋梁出現(xiàn)裂縫。因此,嚴格按照國家有關(guān)規(guī)范、技術(shù)標準進行設計、施工和監(jiān)理,是保證結(jié)構(gòu)安全耐用的前提和基礎。在運營管理過程中,進一步加強巡查和管理,及時發(fā)現(xiàn)和處理問題,也是相當重要的一個環(huán)節(jié)。 外文科技文獻翻譯原文Bridge Crack Causes AnalysedIn recent years

27、, our province has been the rapid development of transport infrastructure, built around a large number of concrete bridges. In bridge construction and use of the process, the result of cracks affecting the quality of the project or even a bridge collapse coverage of common lead. Concrete cracking ca

28、n be described as ordinary disease and frequently-occurring often troubled bridge engineers. In fact, if the design and construction to take certain measures, many cracks can be overcome and control. To further enhance the awareness of cracks in concrete bridge, to avoid endangering the larger proje

29、ct of cracks appeared, the paper bridge cracks in concrete as far as possible the types and causes for a more comprehensive analysis, summarized to facilitate the design and construction to identify control possible ways to crack, to the role of preventive measures. Type of concrete bridge cracks, c

30、auses In fact, the causes of cracks in concrete structures are numerous and complicated, and even multiple factors, but each one has its cracks produced by one or a few main reasons. The type of concrete bridge cracks on its causes can be divided into the following categories: 1 Load induced cracks

31、Concrete bridge in the conventional static and dynamic load and the second stress fracture load produced cracks that sum up the main direct stress fracture, stress fracture of two times. Direct stress fracture is caused by external loads generated by the direct stress cracks. Cracks reasons: 1, desi

32、gn and calculation phase, structure or part of the calculation does not count counting; computing model is unreasonable; structure stress hypothesis and actual Shouli Bu Fu; load less counting or calculation; internal forces and reinforcement calculation error; structural safety factor is not enough

33、. Structural design does not consider the possibility of construction; design section of deficiencies; bar set too few or layout error; structural stiffness is inadequate; structure mishandling; design drawings and explain clearly defined. 2, the construction stage, unrestricted pile construction ma

34、chinery, materials; do not understand the mechanical characteristics of the structure of prefabricated structures, random turning, lifting, transportation, installation; do not follow the construction design drawings, construction of unauthorized changes to the structure in order to change the struc

35、ture of the force model ; do not structure the fatigue strength of machine checking, etc., under vibration. 3, using the stage, beyond the design load of heavy vehicles cross the bridge; by a vehicle, vessel contact, impact; place wind, snow, earthquake, explosion. Second stress fracture is caused b

36、y the external loads secondary stress cracks. Cracks reasons: 1, in the design of external load, because the actual working conditions of structures differ with the conventional calculations, or calculations do not take into account, so in some parts of the structure caused by secondary stress lead

37、to cracking. Two-hinged arch bridge for example, often use layout design X-shaped bar, while reducing the design area measures the size of hinge sections, theoretical moment there does not exist, but the actual bending of the hinge could still, as well as cracks and lead to reinforcement corrosion.

38、2, bridge structures often require cutting grooves, open hole, set the bracket and so on, in the conventional calculation is difficult to conduct accurate simulation schematic, generally set the reinforced light of experience. The results show that, after digging force components, power flow will pr

39、oduce diffraction phenomenon in the vicinity of hole density, resulting in significant stress concentration. In the long-span prestressed continuous beams, often in cross-section of internal forces within the under cut steel beams needed to set anchor head, and in the anchoring section can often be

40、seen near the crack. Therefore, if handled properly, in the corner of these structures or components shape mutation, the reinforced truncated Department cracks. Practical projects, secondary stress fracture is to produce the most common cause of fracture load. Secondary stress cracks are mostly tens

41、ion, splitting, shear properties. Second stress fracture is caused by the load, not only by conventional general terms, but with the constant improvement of modern computing means, second stress fracture also can do a reasonable check of. For example, on the PC now, produced by secondary creep stres

42、s, a lot of plane frame finite element program can be calculated correctly, but 40 years ago, it is more difficult. Design should be taken to avoid structural breaks (or sections mutation), can not avoid, they should do local processing, such as rounded the corner to do, mutation causing gradual tra

43、nsition, while strengthening the structural reinforcement, by the corner with diagonal to the bar, when conditions for the large holes in the peripheral retaining edge angle setting. Load fracture characteristics vary according to load presents different characteristics. Many of these cracks appear

44、in the tension zone, shear zone or vibration serious parts. It should be noted that if the compression zone in the skin or from the short cracks along the compressive direction is often a sign of the structure to reach capacity limits, is a sign of structural damage, often caused by the section size

45、 is smaller. According to the force structure of different ways, resulting in the fracture characteristics are as follows: 1, the center of tension. Crack through the component cross-section, spacing roughly equal, and the direction perpendicular to the force. Use of twisted steel, the cracks in the

46、 steel between the cracks near the times. 2, the center pressure. Component appears along the direction parallel to the force parallel to the short and dense cracks. 3, bending. Moment near the maximum cross section area from the edge of tension and tension began to crack in the vertical direction,

47、and gradually to the axis direction. Use of twisted steel, the cracks can be seen a short time between the cracks. When structural reinforcement less time, less and wide cracks, the structure may be in brittle fracture. 4, large eccentric compression. Large eccentric compression and tension reinforc

48、ement area less small eccentric compression, similar to the bending members. 5, small eccentricity. Small eccentric compression and tension reinforcement area more large eccentric compression, similar to the center of compression members. 6, shear. When the stirrup is too close baroclinic damage occ

49、urred along the abdominal end of the beam direction greater than 45 inclined crack; when the stirrup shear compression failure occurs when appropriate, along the lower end of the beam in the direction of approximately 45 inclined crack parallel to each other. 7, by twisting. Component side of the ab

50、domen there is more than the treaty first, the direction of 45 oblique fracture, spiral direction to the adjacent surface to expand. 8, by punching. Stigma plate 4 along the side of the direction of slope occurred at about 45 crack, the formation of the punching. 9, local compression. In the local c

51、ompression zone in the direction generally parallel with the pressure of multiple short cracks. 2, the cracks caused by temperature changes With thermal expansion and contraction of concrete nature, when the internal temperature of the external environment or changes in the structure, concrete will

52、be deformed, if the deformation was constrained, then the structure will result in stress, when the stress exceeds the tensile strength of concrete that is produced when the temperature cracks. In some long-span bridges, thermal stress can reach or even exceed the live load stress. Temperature diffe

53、rence between cracks in the main features of other crack with temperature changes is to expand or close. The main factors causing temperature changes: 1, the annual temperature. Year, the temperature changing seasons, but the change is relatively slow, on bridge structure is mainly caused vertical d

54、isplacement of the bridge, usually through bridge expansion joints, bearing displacement or set of flexible structures such as piers coordinated measures, only the structure only when the displacement caused by the limited temperature cracks, such as bridge, bridge and so just. Chinas annual tempera

55、ture generally in January and July, as the monthly mean temperature change range. Taking into account the creep characteristics of concrete, the calculation of temperature stress on elastic modulus of concrete reduction should be considered. 2, sunshine. Bridge deck and girders or bridge pier side o

56、f the sun exposure, the temperature is higher than other parts, were non-linear distribution of temperature gradient. Due to the role of self-restraint, resulting in higher local tensile stress, cracks. Sunshine and the following is a sudden drop in temperature cause cracks in the structure of the m

57、ost common cause. 3, a sudden cooling. Dump heavy rain, the cold air invasion of the sun can cause a sudden drop in temperature of the outer surface of the structure, but due to temperature changes in the temperature gradient caused by the relatively slow. Sunshine and the sudden drop in temperature can be used for calculating internal forces when the real bridge design specifications or reference data, the elastic modulus of concrete does not consider reduction. 4, heat of hydration. In the construction process, mass concrete (thickness over 2.0 m) after pouring

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論