影響豬肉價(jià)格的因素分析_第1頁(yè)
影響豬肉價(jià)格的因素分析_第2頁(yè)
影響豬肉價(jià)格的因素分析_第3頁(yè)
影響豬肉價(jià)格的因素分析_第4頁(yè)
影響豬肉價(jià)格的因素分析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 影響豬肉價(jià)格的因素分析1研究問(wèn)題的背景在當(dāng)前通貨膨脹日益嚴(yán)重的情況下,各種物價(jià)飛漲,給人們的日常生活帶來(lái)了極大地影響,生活中一些必需的物質(zhì)也在漲,蔬菜肉的價(jià)格節(jié)節(jié)攀升,因此我覺(jué)得有必要研究一下究竟是什么因素在影響著這些必需品的價(jià)格,從而控制這些因素的上漲,使必需品的價(jià)格維持在一個(gè)比較穩(wěn)定的水平上。2研究的主要內(nèi)容這里我選取了對(duì)人們生活影響較大的豬肉的價(jià)格,從城鎮(zhèn)居民收入,豬的供給量,飼料價(jià)格,替代品雞蛋的價(jià)格,豬肉供給量五個(gè)方面來(lái)研究,看看它們相不相關(guān),是正相關(guān)還是負(fù)相關(guān),有多大的影響程度,從而調(diào)節(jié)這些變量使豬肉的價(jià)格比較穩(wěn)定,對(duì)人們的生活產(chǎn)生較小的影響。關(guān)鍵詞:豬肉價(jià)格 3選取數(shù)據(jù) 年份豬

2、肉價(jià)格城鎮(zhèn)居民收入飼料價(jià)格雞蛋價(jià)格豬肉供給量199610.54838.91.57.83158199712.25160.31.566.23596.3199810.15425.11.495.53883.719997.558541.25.24005.6200010.10262801.47255.093966200110.656859.61.3945.34051.7200210.237702.81.5225.394123.1200310.748472.21.65.254238.6200413.769421.61.696.394341200513.19104931.85256.574555.320061

3、2.1311759.51.8686.224650.5200718.8113785.52.137.764287.8200823.4915780.82.627.844620.54建立模型將以上數(shù)據(jù)導(dǎo)入eviews,就可以建立以下equation其中y代表豬肉價(jià)格,x1表示城鎮(zhèn)居民收入,x2代表飼料價(jià)格,x3代表雞蛋價(jià)格,x4表示豬肉的供給量.dependent variable: ymethod: least squaresdate: 12/18/10 time: 14:25sample: 1996 2008included observations: 13variablecoefficients

4、td. errort-statisticprob.c9.15743513.677330.6695340.5220x10.0004980.0005410.9196120.3847x210.258233.1922473.2134820.0124x3-0.4803610.861324-0.5577010.5923x4-0.0036890.002947-1.2515900.2461r-squared0.946997mean dependent var12.56938adjusted r-squared0.920496s.d. dependent var4.232883s.e. of regressio

5、n1.193522akaike info criterion3.475417sum squared resid11.39596schwarz criterion3.692706log likelihood-17.59021f-statistic35.73401durbin-watson stat2.510756prob(f-statistic)0.000038表中除x2外,概率均大于0.05,說(shuō)明其對(duì)y的影響不顯著,必須對(duì)其進(jìn)行修正,使其對(duì)y的影響顯著。經(jīng)修正的結(jié)果如下:dependent variable: ymethod: least squaresdate: 12/18/10 time:

6、 13:42sample (adjusted): 1997 2008included observations: 12 after adjustmentsvariablecoefficientstd. errort-statisticprob.c26.351905.2969214.9749460.0016d(x1)0.0039440.0016512.3881830.0483log(x2)14.449493.6619583.9458360.0056d(x3)1.4456990.5840702.4752130.0425x4(-1)-0.0060370.001353-4.4634710.0029r-

7、squared0.973597mean dependent var12.74183adjusted r-squared0.958510s.d. dependent var4.373145s.e. of regression0.890771akaike info criterion2.900878sum squared resid5.554310schwarz criterion3.102922log likelihood-12.40527f-statistic64.53091durbin-watson stat1.689968prob(f-statistic)0.000013從表中可以看出,t

8、檢驗(yàn)的概率均小于0.05,此時(shí)的變量對(duì)y的影響是顯著的,此模型才是可以用的。還可以看出f檢驗(yàn)的值也較大,所以拒絕原假設(shè),總體的顯著性成立??梢缘玫较铝心P停篹stimation command:=ls y c d(x1) log(x2) d(x3) x4(-1)estimation equation:=y = c(1) + c(2)*d(x1) + c(3)*log(x2) + c(4)*d(x3) + c(5)*x4(-1)substituted coefficients:=y = 26.35189582 + 0.003943975368*d(x1) + 14.44948848*log(x2

9、) + 1.44569861*d(x3) - 0.006037331562*x4(-1)5異方差檢驗(yàn)(懷特檢驗(yàn))原假設(shè)ho:殘差項(xiàng)不存在異方差備擇假設(shè)h1:殘差項(xiàng)存在異方差white heteroskedasticity test:f-statistic0.975116probability0.568784obs*r-squared8.666952probability0.371165test equation:dependent variable: resid2method: least squaresdate: 12/18/10 time: 14:44sample: 1997 2008in

10、cluded observations: 12variablecoefficientstd. errort-statisticprob.c9.59299477.996970.1229920.9099d(x1)0.0023160.0021471.0788210.3597(d(x1)22.08e-078.06e-070.2584460.8128log(x2)1.6597335.6856470.2919160.7894(log(x2)2-4.5993656.490699-0.7086090.5297d(x3)0.2440161.1780230.2071400.8492(d(x3)2-0.637393

11、0.997492-0.6389950.5683x4(-1)-0.0023800.037570-0.0633530.9535x4(-1)2-5.31e-084.56e-06-0.0116440.9914r-squared0.722246mean dependent var0.462859adjusted r-squared-0.018431s.d. dependent var0.471484s.e. of regression0.475809akaike info criterion1.466105sum squared resid0.679182schwarz criterion1.82978

12、5log likelihood0.203370f-statistic0.975116durbin-watson stat2.734176prob(f-statistic)0.568784從表中可以看出懷特檢驗(yàn)的概率均大于0.05,所以接受原假設(shè),說(shuō)明殘差項(xiàng)不存在異方差。6自相關(guān)檢驗(yàn)(lm檢驗(yàn))breusch-godfrey serial correlation lm test:f-statistic0.263214probability0.778599obs*r-squared1.143077probability0.564656test equation:dependent variable

13、: residmethod: least squaresdate: 12/18/10 time: 14:47presample missing value lagged residuals set to zero.variablecoefficientstd. errort-statisticprob.c-0.4681376.037956-0.0775320.9412d(x1)0.0002890.0019010.1522180.8850log(x2)-0.7251874.286532-0.1691780.8723d(x3)-0.2234790.730846-0.3057810.7721x4(-

14、1)0.0001390.0015390.0906470.9313resid(-1)0.1161500.5420630.2142740.8388resid(-2)-0.4161950.575909-0.7226750.5023r-squared0.095256mean dependent var-2.09e-15adjusted r-squared-0.990436s.d. dependent var0.710589s.e. of regression1.002519akaike info criterion3.134108sum squared resid5.025226schwarz cri

15、terion3.416970log likelihood-11.80465f-statistic0.087738durbin-watson stat1.851760prob(f-statistic)0.994924從表中可以看出,檢驗(yàn)之后的概率均大于0.05,接受原假設(shè),說(shuō)明殘差之間不存在二階自相關(guān),通過(guò)了lm檢驗(yàn)。7正態(tài)分布檢驗(yàn)從表中可以看出jb統(tǒng)計(jì)量的概率為0.725370,說(shuō)明殘差有百分之72.5370的概率是正態(tài)分布,大于0.05,通過(guò)了正態(tài)分布檢驗(yàn)。8白噪聲檢驗(yàn)date: 12/18/10 time: 15:00sample: 1997 2008included observatio

16、ns: 12autocorrelationpartial correlationacpacq-statprob. |* . |. |* . |10.1450.1450.32050.571. *| . |. *| . |2-0.213-0.2391.08060.583. *| . |. *| . |3-0.243-0.1842.18230.535. | . |. | . |4-0.040-0.0272.21610.696. |* . |. | . |50.1200.0442.56210.767. | . |. *| . |60.000-0.0892.56210.861. | . |. | . |

17、70.0000.0342.56210.922. | . |. | . |80.0000.0122.56210.959. | . |. | . |90.000-0.0102.56210.979. | . |. | . |100.0000.0002.56210.990從圖中可以看出,其自相關(guān)系數(shù)和偏自相關(guān)系數(shù)均落在二倍的標(biāo)注差以內(nèi),說(shuō)明其波動(dòng)性較小,且在幾階之后趨近于0,說(shuō)明從長(zhǎng)期來(lái)看,其是不相干的,屬于白噪聲。9偽回歸檢驗(yàn)null hypothesis: e1 has a unit rootexogenous: nonelag length: 0 (automatic based on sic,

18、 maxlag=2)t-statisticprob.*augmented dickey-fuller test statistic-2.7565690.0107test critical values:1% level-2.7921545% level-1.97773810% level-1.602074*mackinnon (1996) one-sided p-values.warning: probabilities and critical values calculated for 20observations and may not be accurate for a sample

19、size of 11augmented dickey-fuller test equationdependent variable: d(e1)method: least squaresdate: 12/18/10 time: 15:11sample (adjusted): 1998 2008included observations: 11 after adjustmentsvariablecoefficientstd. errort-statisticprob.e1(-1)-0.9714940.352429-2.7565690.0202r-squared0.417541mean depen

20、dent var0.144408adjusted r-squared0.417541s.d. dependent var0.956933s.e. of regression0.730322akaike info criterion2.295845sum squared resid5.333700schwarz criterion2.332017log likelihood-11.62715durbin-watson stat1.779706從表中可以看出,其概率為0.0107小于0.05,所以不存在偽回歸,通過(guò)了檢驗(yàn)。9模型平穩(wěn)性和預(yù)測(cè)性檢驗(yàn) 從圖中可以看出,模型的穩(wěn)定性一直很好,始終在紅線的

21、范圍內(nèi)。從圖中可以看出,模型的預(yù)測(cè)能力較強(qiáng),穩(wěn)定性也較強(qiáng),符合我們所需要的模型。從圖中可以看出,該模型的一步預(yù)測(cè)能力較好,因?yàn)樗{(lán)線一直在紅線內(nèi),處在預(yù)測(cè)能力之內(nèi)。從圖中可以看出,其n步預(yù)測(cè)能力較好,藍(lán)線一直處在紅線之內(nèi)。圖中的紅線代表預(yù)測(cè)能力,藍(lán)線處在兩條紅線之內(nèi)則代表穩(wěn)定性較強(qiáng),在預(yù)測(cè)期內(nèi)結(jié)構(gòu)未發(fā)生改變,說(shuō)明該模型的預(yù)測(cè)能力和穩(wěn)定性較好。10參數(shù)約束檢驗(yàn)(1)約束條件:c(1)=0wald test:equation: equation2test statisticvaluedfprobabilityf-statistic24.75008(1, 7)0.0016chi-square24.75

22、00810.0000null hypothesis summary:normalized restriction (= 0)valuestd. err.c(1)26.351905.296921restrictions are linear in coefficients.從表中可以看出,其概率小于0.05,所以拒絕原假設(shè),說(shuō)明參數(shù)c(1)=0不成立。(2)約束條件:c(2)=0wald test:equation: equation2test statisticvaluedfprobabilityf-statistic5.703420(1, 7)0.0483chi-square5.703420

23、10.0169null hypothesis summary:normalized restriction (= 0)valuestd. err.c(2)0.0039440.001651restrictions are linear in coefficients.從表中可以看出,其概率小于0.05,所以拒絕原假設(shè),說(shuō)明參數(shù)c(2)=0不成立。(3)約束條件:c(3)=0wald test:equation: equation2test statisticvaluedfprobability0.f-statistic15.56962(1, 7)0.0056chi-square15.569621

24、0.0001null hypothesis summary:normalized restriction (= 0)valuestd. err.c(3)14.449493.661958restrictions are linear in coefficients.從表中可以看出,其概率小于0.05,所以拒絕原假設(shè),說(shuō)明參數(shù)c(3)=0不成立。(4)約束條件:c(4)=0wald test:equation: equation2test statisticvaluedfprobabilityf-statistic6.126678(1, 7)0.0425chi-square6.12667810.0

25、133null hypothesis summary:normalized restriction (= 0)valuestd. err.c(4)1.4456990.584070restrictions are linear in coefficients.從表中可以看出,其概率小于0.05,所以拒絕原假設(shè),說(shuō)明參數(shù)c(4)=0不成立。(5)約束條件:c(5)=0wald test:equation: equation2test statisticvaluedfprobabilityf-statistic19.92258(1, 7)0.0029chi-square19.9225810.0000

26、null hypothesis summary:normalized restriction (= 0)valuestd. err.c(5)-0.0060370.001353restrictions are linear in coefficients.從表中可以看出,其概率小于0.05,所以拒絕原假設(shè),說(shuō)明參數(shù)c(5)=0不成立。11殘差圖檢驗(yàn)從圖中可以看出,回歸方程擬合的較好,殘差的波動(dòng)性不大,模型較穩(wěn)定,預(yù)測(cè)能力比較強(qiáng)。12預(yù)測(cè)圖檢驗(yàn)從圖中可以看出,藍(lán)線一直處在兩條紅線之內(nèi),說(shuō)明其預(yù)測(cè)的水平較好,一直處在預(yù)測(cè)能力之內(nèi)。13經(jīng)濟(jì)意義的檢驗(yàn)estimation command:=ls y c d(x1) log(x2) d(x3) x4(-1)estimation equation:=y = c(1) + c(2)*d(x1) + c(3)*log(x2) + c(4)*d(x3) + c(5)*x4(-1)substituted coefficients:=y = 26.3518

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論