




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1 分析化學(xué)中的誤差與分析化學(xué)中的誤差與 數(shù)據(jù)處理數(shù)據(jù)處理23.1.1 系統(tǒng)誤差和隨機(jī)誤差系統(tǒng)誤差和隨機(jī)誤差一、系統(tǒng)誤差一、系統(tǒng)誤差:由于分析過程中某些固定的原由于分析過程中某些固定的原 因所造成的誤差因所造成的誤差.1.性質(zhì)性質(zhì)(1)單向性、重復(fù)性。單向性、重復(fù)性。 (2)與測(cè)定次數(shù)無(wú)關(guān)。)與測(cè)定次數(shù)無(wú)關(guān)。 (3)可以校正,大小、正負(fù)可以測(cè)定。)可以校正,大小、正負(fù)可以測(cè)定。2.產(chǎn)生的原因產(chǎn)生的原因 (1)方法誤差)方法誤差 (2)儀器和試劑誤差)儀器和試劑誤差 (3)操作誤差)操作誤差 (4)主觀誤差)主觀誤差3 1 1、性質(zhì):、性質(zhì):(1 1)大小可變)大小可變 (2 2)方向不定,有時(shí)
2、正、有時(shí)負(fù)。)方向不定,有時(shí)正、有時(shí)負(fù)。 (3 3)只能減小,不能消除。)只能減小,不能消除。2 2、規(guī)律:符合統(tǒng)計(jì)規(guī)律、規(guī)律:符合統(tǒng)計(jì)規(guī)律-正態(tài)分布規(guī)律正態(tài)分布規(guī)律 (1 1)大小相近的正負(fù)誤差出現(xiàn)的幾率相等。)大小相近的正負(fù)誤差出現(xiàn)的幾率相等。 (2 2)小誤差出現(xiàn)的幾率大,大誤差出現(xiàn)的幾)小誤差出現(xiàn)的幾率大,大誤差出現(xiàn)的幾 率小,特大誤差出現(xiàn)的幾率級(jí)小。率小,特大誤差出現(xiàn)的幾率級(jí)小。41.定義定義:誤誤 差:測(cè)定結(jié)果與差:測(cè)定結(jié)果與真實(shí)值真實(shí)值之間的差值之間的差值準(zhǔn)確度:分析結(jié)果與真值相接近的程度準(zhǔn)確度:分析結(jié)果與真值相接近的程度 準(zhǔn)確度的高低用誤差表示準(zhǔn)確度的高低用誤差表示 系統(tǒng)誤差影
3、響準(zhǔn)確度的高低系統(tǒng)誤差影響準(zhǔn)確度的高低2.表示方法表示方法: 絕對(duì)誤差和相對(duì)誤差絕對(duì)誤差和相對(duì)誤差 絕對(duì)誤差絕對(duì)誤差: E = x - xT 相對(duì)誤差: Er = 100 %TxE5 1.定義定義:偏偏 差差: :測(cè)定結(jié)果與平均值之間的差值測(cè)定結(jié)果與平均值之間的差值精密度精密度: :在相同條件下在相同條件下, ,各次分析結(jié)果相互間接近的程度各次分析結(jié)果相互間接近的程度. . 精密度的高低用偏差表示精密度的高低用偏差表示. .偏差小偏差小, ,表示數(shù)據(jù)集中表示數(shù)據(jù)集中, ,精密度高精密度高; ; 反之反之, ,數(shù)據(jù)分散數(shù)據(jù)分散, ,精密度低精密度低. .隨機(jī)誤差影響分析結(jié)果的精密度隨機(jī)誤差影響分
4、析結(jié)果的精密度. . 2. 2.表示方法表示方法: : (1) (1)絕對(duì)誤差和相對(duì)誤差絕對(duì)誤差和相對(duì)誤差: : xxdiinxxxxn.21xddir6 (3)標(biāo)準(zhǔn)偏差和相對(duì)標(biāo)準(zhǔn)偏差標(biāo)準(zhǔn)偏差和相對(duì)標(biāo)準(zhǔn)偏差 相對(duì)標(biāo)準(zhǔn)偏差(變異系數(shù))相對(duì)標(biāo)準(zhǔn)偏差(變異系數(shù)) RSD = ( S / x ) 100 %2i()1 1xxns 樣樣本本標(biāo)標(biāo)準(zhǔn)準(zhǔn)偏偏差差:( -1) nf為為自自由由度度, 用用 表表示示ndddnd 211%100 xddir7(5)平均值的標(biāo)準(zhǔn)偏差:平均值的標(biāo)準(zhǔn)偏差: 總體:總體: 樣本:樣本:一般分析:一般分析:3-4次次要求高時(shí):要求高時(shí):5-9次次nx nssx81x2x3x
5、1x2x3x91.精密度好是準(zhǔn)確度好的前提精密度好是準(zhǔn)確度好的前提(必要條件必要條件);2.精密度好,準(zhǔn)確度不一定好精密度好,準(zhǔn)確度不一定好(系統(tǒng)誤差系統(tǒng)誤差);3.精密度不好精密度不好,衡量準(zhǔn)確度無(wú)意義;衡量準(zhǔn)確度無(wú)意義;4.在確定消除了系統(tǒng)誤差的前提下在確定消除了系統(tǒng)誤差的前提下,精密度精密度可表達(dá)準(zhǔn)確度??杀磉_(dá)準(zhǔn)確度。自學(xué)自學(xué):中位數(shù)中位數(shù)(XM)P40 ; 級(jí)差級(jí)差(R)P41 ; 公差公差P45 ;10C Ck kB Bk kA Ak kR RC Ck kB Bk kA Ak kk kR Rc cb ba ac cb ba a ,)( 1C CC CB BB BA AA AR RR
6、RC CA AB Bm mR R ,2 )(A AA An nR RR Rm mA AR Rn n ,3 )(A AA Am mR RA Am mR R 434. 0,lg4 )(k ki i為常數(shù)為常數(shù)d dx xx xd dR RR Rx xf fR R/),( 通通式式:設(shè)分析結(jié)果設(shè)分析結(jié)果R 由測(cè)量值由測(cè)量值A(chǔ)、B、C 計(jì)算獲得,測(cè)計(jì)算獲得,測(cè)量值的系統(tǒng)誤差分別為量值的系統(tǒng)誤差分別為 A A、 B B、 C C,標(biāo)準(zhǔn)偏差,標(biāo)準(zhǔn)偏差分別為分別為sA、sB、sC。1122222221C Cc cB Bb bA Aa aR Rc cb ba as sk ks sk ks sk ks sC C
7、k kB Bk kA Ak kk kR R ,)(22222222,2C Cs sB Bs sA As sR Rs sC CABABm mR RC CB BA AR R )(22222,3A As sn nR Rs smAmAR RA AR Rn n )(A As sm ms sA Am mR RA AR R434. 0,lg4 )(d dx xd dR Rx xf fR Rx xR R/),( 通通式式:設(shè)分析結(jié)果設(shè)分析結(jié)果Y 由測(cè)量值由測(cè)量值A(chǔ)、B、C 計(jì)算獲得,測(cè)量值的計(jì)算獲得,測(cè)量值的系統(tǒng)誤差分別為系統(tǒng)誤差分別為 A、 B、 C,標(biāo)準(zhǔn)偏差分別為標(biāo)準(zhǔn)偏差分別為sA、sB、sC。12C C
8、c cB Bb bA Aa aR Rc cb ba ak kk kk kC Ck kB Bk kA Ak kk kR R max1,)(C CB BA AR RC CABABm mR RC CB BA AR R ,2 )(13天平稱量的標(biāo)準(zhǔn)偏差天平稱量的標(biāo)準(zhǔn)偏差 s = 0.10 mg,求稱量試樣時(shí)的標(biāo)準(zhǔn)偏差,求稱量試樣時(shí)的標(biāo)準(zhǔn)偏差 。解:解:稱一個(gè)樣需讀兩次平衡點(diǎn),稱一個(gè)樣需讀兩次平衡點(diǎn),mgsss14. 010. 0222221)(例例2 2滴定管的初讀數(shù)為(滴定管的初讀數(shù)為(0.05 0.01) mL, 末讀數(shù)為(末讀數(shù)為(22.10 0.01) mL, 問滴定劑的體積可能在多大范圍內(nèi)波
9、動(dòng)?問滴定劑的體積可能在多大范圍內(nèi)波動(dòng)?解:解:極值誤差極值誤差 V = 0.01 + 0.01 = 0.02滴定劑體積為:滴定劑體積為: (22.10-0.05) 0.02 mL = 22.05 0.02 mL14偏差: (1)絕對(duì)偏差 :?jiǎn)未螠y(cè)量值與平均值之差 (2)相對(duì)偏差:絕對(duì)偏差占平均值的百分比dxxidxxxxi100%100%15(5)標(biāo)準(zhǔn)偏差: (6)相對(duì)標(biāo)準(zhǔn)偏差(變異系數(shù)) (3)平均偏差:各測(cè)量值絕對(duì)偏差的算術(shù)平均值 (4)相對(duì)平均偏差:平均偏差占平均值的百分比nxxdi%100%100 xnxxixdnxniix12)(1)(12nxxSniixRSDSxx100%未知未
10、知已知已知16 m 臺(tái)秤臺(tái)秤(稱至稱至0.1g):12.8g(3), 0.5g(1), 1.0g(2) 分析天平分析天平(稱至稱至0.1mg):12.8218g(6), 0.5024g(4), 0.0500g(3)V 滴定管滴定管(量至量至0.01mL):26.32mL(4), 3.97mL(3) 容量瓶容量瓶:100.0mL(4),250.0mL(4) 移液管移液管:25.00mL(4); 量筒量筒(量至量至1mL或或0.1mL):26mL(2), 4.0mL171. 數(shù)字前數(shù)字前0不計(jì)不計(jì),數(shù)字后計(jì)入數(shù)字后計(jì)入 : 0.024502. 數(shù)字后的數(shù)字后的0含義不清楚時(shí)含義不清楚時(shí), 最好用最
11、好用指數(shù)形式指數(shù)形式表示表示 : 1000 ( 1.0103 ,1.00103 ,1.000 103 )3. 自然數(shù)自然數(shù)可看成具有無(wú)限多位數(shù)可看成具有無(wú)限多位數(shù)(如倍數(shù)關(guān)系、分?jǐn)?shù)關(guān)系如倍數(shù)關(guān)系、分?jǐn)?shù)關(guān)系);常數(shù)常數(shù)亦可看成具有無(wú)限多位數(shù),如亦可看成具有無(wú)限多位數(shù),如 e 4. 數(shù)據(jù)的數(shù)據(jù)的第一位數(shù)大于等于第一位數(shù)大于等于 8 的的,可多計(jì)一位有效數(shù)字,如可多計(jì)一位有效數(shù)字,如 9.45104, 95.2%, 8.655. 對(duì)數(shù)與指數(shù)對(duì)數(shù)與指數(shù)的有效數(shù)字位數(shù)按尾數(shù)計(jì),的有效數(shù)字位數(shù)按尾數(shù)計(jì), 如如 10-2.34 ; pH=11.02, 則則H+=9.510-126. 誤差誤差只需保留只需保留
12、12位;位;7. 化學(xué)平衡計(jì)算化學(xué)平衡計(jì)算中中,結(jié)果一般為兩位有效數(shù)字結(jié)果一般為兩位有效數(shù)字(由于由于K值一般為兩位值一般為兩位有效數(shù)字有效數(shù)字); 8. 常量分析法常量分析法一般為一般為4位有效數(shù)字位有效數(shù)字(Er0.1%),微量分析為),微量分析為2位位.18例如例如, 要修約為四位有效數(shù)字時(shí)要修約為四位有效數(shù)字時(shí): 尾數(shù)尾數(shù)4時(shí)舍時(shí)舍, 0.52664 - 0.5266 尾數(shù)尾數(shù)6時(shí)入時(shí)入, 0.36266 - 0.3627 尾數(shù)尾數(shù)5時(shí)時(shí), 若后面數(shù)為若后面數(shù)為0, 舍舍5成雙成雙: 10.2350-10.24, 250.650-250.6 若若5后面還有不是后面還有不是0的任何數(shù)皆入
13、的任何數(shù)皆入: 18.0850001-18.0919加減法加減法:結(jié)果的絕對(duì)誤差應(yīng)不小于各項(xiàng)中絕對(duì)結(jié)果的絕對(duì)誤差應(yīng)不小于各項(xiàng)中絕對(duì)誤差最大的數(shù)誤差最大的數(shù).(與小數(shù)點(diǎn)后位數(shù)最少的數(shù)一與小數(shù)點(diǎn)后位數(shù)最少的數(shù)一致致) 50.1 0.1 50.1 1.46 0.01 1.5 + 0.5812 0.001 + 0.6 52.1412 52.2 52.120乘除法乘除法:結(jié)果的相對(duì)誤差應(yīng)與各因數(shù)中相對(duì)結(jié)果的相對(duì)誤差應(yīng)與各因數(shù)中相對(duì)誤差最大的數(shù)相適應(yīng)誤差最大的數(shù)相適應(yīng) (即與有效數(shù)字位數(shù)即與有效數(shù)字位數(shù)最少的一致最少的一致) 例例3 0.012125.661.0578=0.328432 (0.8%) (0
14、.04%) (0.01%) (0.3%)213CaCO2HClCaClH COHCl() 322過過量量 33310.1000 25.000.100CaC0 24.10( CaCO )2O10sMmw = 30.1000 25.00 0.1000 24.10100.1/20.2351 100.0191599 ? NaOHH2O+CO20.0192221.正確選擇試樣和測(cè)量?jī)x器正確選擇試樣和測(cè)量?jī)x器 如如Er 0.1% 用萬(wàn)分之一天平用萬(wàn)分之一天平 m 0.2g 用千分之一天平用千分之一天平 m 2g2.正確記錄測(cè)量數(shù)據(jù)正確記錄測(cè)量數(shù)據(jù) 分析天平分析天平:準(zhǔn)確稱取準(zhǔn)確稱取0.25g,記作記作0.
15、2500g 滴滴 定定 管管:讀取讀取25mL ,記作記作25.00mL3.高含量組分高含量組分( 10%) 4位有效數(shù)字位有效數(shù)字 中含量組分中含量組分(110%) 3位有效數(shù)字位有效數(shù)字 微微 量量 組組 分分( 1%) 1%) 2位有效數(shù)字位有效數(shù)字 誤差誤差 1位有效數(shù)字位有效數(shù)字,最多最多2位有效數(shù)字位有效數(shù)字231. 頻數(shù)分布:頻數(shù)分布: 本例為礦石試樣本例為礦石試樣,測(cè)定銅的測(cè)定銅的質(zhì)量分?jǐn)?shù)質(zhì)量分?jǐn)?shù),共有共有100個(gè)測(cè)量值個(gè)測(cè)量值,分分10組組.(1)算出極差)算出極差 R=1.55-1.27=0.28(2)確定組數(shù)和組距:)確定組數(shù)和組距: 組數(shù)視樣品容量而定組數(shù)視樣品容量而定
16、 組距組距x=R/組數(shù)組數(shù)=0.28/10 0.03(3)統(tǒng)計(jì)頻數(shù)和相對(duì)頻數(shù))統(tǒng)計(jì)頻數(shù)和相對(duì)頻數(shù)(4)繪制相對(duì)頻數(shù))繪制相對(duì)頻數(shù) 分布直方圖。分布直方圖。 324 可以設(shè)想可以設(shè)想:測(cè)量數(shù)據(jù)非常多測(cè)量數(shù)據(jù)非常多,組分得非常細(xì)組分得非常細(xì),直方圖的形狀直方圖的形狀逐漸趨于一條平滑的曲線逐漸趨于一條平滑的曲線-正態(tài)分布曲線。正態(tài)分布曲線。即即:當(dāng)測(cè)量次數(shù)當(dāng)測(cè)量次數(shù)n時(shí)時(shí): 組距組距x 0 = f(x) = f(x) xPdxdP25測(cè)量值正態(tài)分布測(cè)量值正態(tài)分布N ( , 2) 的概率密度函數(shù)的概率密度函數(shù) 1=0.047 2=0.023 x隨機(jī)誤差的正態(tài)分布隨機(jī)誤差的正態(tài)分布測(cè)量值的正態(tài)分布測(cè)量值
17、的正態(tài)分布0 0 x- - 222)(21)(xexfy26總體標(biāo)準(zhǔn)偏差總體標(biāo)準(zhǔn)偏差 相同,相同,總體平均值總體平均值 不同不同總體平均值總體平均值 相同,總相同,總體標(biāo)準(zhǔn)偏差體標(biāo)準(zhǔn)偏差 不同不同原因:原因:1 1、總體不同、總體不同2 2、同一總體,存在系統(tǒng)、同一總體,存在系統(tǒng)誤差誤差原因:原因:同一總體,精密度不同同一總體,精密度不同271 1、小誤差出現(xiàn)的概率大,大誤差出現(xiàn)的概率??;特別大的誤、小誤差出現(xiàn)的概率大,大誤差出現(xiàn)的概率??;特別大的誤差出現(xiàn)的概率極小。差出現(xiàn)的概率極小。2 2、正誤差出現(xiàn)的概率與負(fù)誤差出現(xiàn)的概率相等。、正誤差出現(xiàn)的概率與負(fù)誤差出現(xiàn)的概率相等。3 3、x = x
18、= 時(shí),時(shí),y y 值最大,體現(xiàn)了測(cè)量值的集中趨勢(shì)。集中的值最大,體現(xiàn)了測(cè)量值的集中趨勢(shì)。集中的程度與程度與 有關(guān)。有關(guān)。平均值平均值222)(21xeyx x28令:令:xu正態(tài)分布函數(shù)轉(zhuǎn)換成正態(tài)分布函數(shù)轉(zhuǎn)換成標(biāo)準(zhǔn)正態(tài)分布函數(shù):標(biāo)準(zhǔn)正態(tài)分布函數(shù):2/2( )12uyue68.3%95.5%99.7%u1)(duu29面積(概率uudueduu02/221)| u |面積| u 面積| u 面積| u 面積0.6740.25001.0000.34131.6450.45001.9600.47502.0000.47732.5760.49503.0000.49870.5000正態(tài)分布概率積分表(部分
19、數(shù)值)正態(tài)分布概率積分表(部分?jǐn)?shù)值)30隨機(jī)誤差出現(xiàn)的區(qū)間隨機(jī)誤差出現(xiàn)的區(qū)間u(以(以 為單位)為單位)測(cè)量值出現(xiàn)的區(qū)間測(cè)量值出現(xiàn)的區(qū)間概率概率%(-1, +1)( -1 , +1 )68.3(-1.96, +1.96)( -1.96 , +1.96 )95.0(-2, +2)( -2 , +2 )95.5(-2.58, 2.58)( -2.58 , +2.58 )99.0(-3, +3)( -3 , +3 )99.7xu313320.000.100.200.300.40-3-2-10123uy(1)解解5 . 110. 015. 0 xu查表:查表:u=1.5 時(shí),概率為:時(shí),概率為:2 0
20、.4332 = 0.866 = 86.6 %(2)解)解5 . 210. 075. 12u查表:查表:u 2.5 時(shí),概率為:時(shí),概率為:0.5 0.4938 = 0.0062 =0.62%一樣品,標(biāo)準(zhǔn)值為一樣品,標(biāo)準(zhǔn)值為1.75%,測(cè)得,測(cè)得 = 0.10, 求結(jié)果落在求結(jié)果落在1.750.15% 概率;概率;測(cè)量值大于測(cè)量值大于2 %的概率。的概率。86.6%0.62%P a aP + a = 1a 顯著性水平顯著性水平 P 置信度置信度33總體總體樣本樣本甲甲樣本容量樣本容量平均值平均值500g500g乙乙平行測(cè)定平行測(cè)定 3 3 次次1x平行測(cè)定平行測(cè)定 4 4 次次2x丙丙平行測(cè)定平
21、行測(cè)定 4 4次次3x有限數(shù)據(jù)的處理:有限數(shù)據(jù)的處理:.,.,321321xxxxxx計(jì)算計(jì)算x估計(jì)估計(jì) 顯著性檢驗(yàn)顯著性檢驗(yàn)沒有系統(tǒng)誤差,沒有系統(tǒng)誤差, = T有系統(tǒng)誤差,有系統(tǒng)誤差, T34數(shù)據(jù)集中趨勢(shì)的表示:對(duì)一數(shù)據(jù)集中趨勢(shì)的表示:對(duì)一B物質(zhì)客觀存在量為物質(zhì)客觀存在量為T 的分析對(duì)的分析對(duì)象進(jìn)行分析,得到象進(jìn)行分析,得到n 個(gè)個(gè)別測(cè)定值個(gè)個(gè)別測(cè)定值 x1、x2、x3、 xn,平均值平均值 Average niixnx11中位數(shù)中位數(shù)MedianMx有限次測(cè)量:測(cè)量值向有限次測(cè)量:測(cè)量值向平均值平均值 集中集中無(wú)限次測(cè)量:測(cè)量值向無(wú)限次測(cè)量:測(cè)量值向總體平均值總體平均值 集中集中xn,35
22、極差極差R R RangeminmaxxxR%100 xRxxdiinxxdnii1100%xdRMD1)(12nxxsnii100%xsRSD36總體標(biāo)準(zhǔn)偏差總體標(biāo)準(zhǔn)偏差nxi2)(標(biāo)準(zhǔn)偏差標(biāo)準(zhǔn)偏差1)(2nxxsi無(wú)限次測(cè)量,無(wú)限次測(cè)量,對(duì)總體平均值的離散對(duì)總體平均值的離散有限次測(cè)量有限次測(cè)量對(duì)平均值的離散對(duì)平均值的離散自由度自由度1 nf計(jì)算一組數(shù)據(jù)分散計(jì)算一組數(shù)據(jù)分散度的獨(dú)立偏差數(shù)度的獨(dú)立偏差數(shù)自由度的理解:例如,有三個(gè)測(cè)量值,求得平均值,也知自由度的理解:例如,有三個(gè)測(cè)量值,求得平均值,也知道道x x1 1和和x x2 2與平均值的差值,那么,與平均值的差值,那么,x x3 3與平均
23、值的差值就是與平均值的差值就是確定的了,不是一個(gè)獨(dú)立的變數(shù)。確定的了,不是一個(gè)獨(dú)立的變數(shù)。37設(shè)有一樣品,設(shè)有一樣品,m 個(gè)分析工作者對(duì)其進(jìn)行分析,每人測(cè)個(gè)分析工作者對(duì)其進(jìn)行分析,每人測(cè) n 次,計(jì)次,計(jì)算出各自的平均值,這些平均值的分布也是符合正態(tài)分布的。算出各自的平均值,這些平均值的分布也是符合正態(tài)分布的。試樣總體試樣總體樣本樣本1樣本樣本2樣本樣本mmmnmmmnnxxxxxxxxxxxxxxx,.,.,.,.,3212223222111131211xxxxxm.,321nxnssx38對(duì)有限次測(cè)量:對(duì)有限次測(cè)量:nssx1、增加測(cè)量次數(shù)、增加測(cè)量次數(shù)可以提高精密度??梢蕴岣呔芏?。2、
24、增加(過多)、增加(過多)測(cè)量次數(shù)的代價(jià)不測(cè)量次數(shù)的代價(jià)不一定能從減小誤差一定能從減小誤差得到補(bǔ)償。得到補(bǔ)償。結(jié)論:結(jié)論:ssx測(cè)量次數(shù)測(cè)量次數(shù)0.00.20.40.60.81.0051015202539無(wú)限次測(cè)量,得到無(wú)限次測(cè)量,得到 xu有限次測(cè)量,得到有限次測(cè)量,得到xs snsxsxtx0.000.100.200.300.40-3-2-10123uyu u 分布曲線分布曲線40自由度f(wàn) =(n-1)顯著水平0.500.100.050.0111.006.3112.71 63.6620.822.924.309.9330.762.353.185.8440.742.132.784.6050.7
25、32.022.574.0360.721.942.453.7170.711.902.373.5080.711.862.313.3690.701.832.263.25100.701.812.233.17200.691.732.092.850.671.651.962.58P = 1 - ,置信度置信度 ,顯著性水平顯著性水平6次測(cè)量,隨機(jī)誤差落次測(cè)量,隨機(jī)誤差落在在2.57 范圍內(nèi)的范圍內(nèi)的概率為概率為95%。xs無(wú)限次測(cè)量,隨機(jī)誤無(wú)限次測(cè)量,隨機(jī)誤差落在差落在1.96 范圍內(nèi)范圍內(nèi)的概率為的概率為95%。41概率概率區(qū)間大小區(qū)間大小00.80 x例:例: 包含在包含在 15. 000.80 包含在
26、包含在05. 000.80把握相對(duì)大把握相對(duì)大把握把握 相對(duì)小相對(duì)小00.80100%的把握的把握無(wú)意義無(wú)意義 包含在包含在42例例查表查表%0 .95P若用單次測(cè)量值來(lái)估計(jì)若用單次測(cè)量值來(lái)估計(jì) 的區(qū)間:的區(qū)間:96. 1 xv 這是一個(gè)在一定置信度下總體平均值的這是一個(gè)在一定置信度下總體平均值的的問題,的問題,是說(shuō)在是說(shuō)在 區(qū)間區(qū)間有有95%的可能的可能 包含包含 。96. 1xnx則則nuxuxx即即96. 1xv 實(shí)際分析工作中通常是以樣本平均值估計(jì)總體平均值實(shí)際分析工作中通常是以樣本平均值估計(jì)總體平均值是說(shuō)是說(shuō)有一定的把握說(shuō)有一定的把握說(shuō) 包含在包含在 的范圍內(nèi)。的范圍內(nèi)。nux96.
27、 1u96. 1v 這是一個(gè)這是一個(gè)的問題,是說(shuō)測(cè)量值落在的問題,是說(shuō)測(cè)量值落在 范圍內(nèi)的概率為范圍內(nèi)的概率為95%。43有限次測(cè)量有限次測(cè)量服從自由度服從自由度 f 的的 t 分布分布fafattt,,時(shí)時(shí)1Pfafatnsxt,,t 代入,得代入,得改寫為改寫為nstxnstxfafa,,置信度為(置信度為(1- ) 100%的的 的置信區(qū)間為的置信區(qū)間為),(,nstxnstxfafa,nstxfa,nsxt ,f ,f44 置信度為置信度為90%時(shí)時(shí),t 0.10,30.10,3=2.35 =(47.60 =(47.60 0.09)%0.09)% 置信度為置信度為95%時(shí)時(shí),t 0.0
28、5,30.05,3=3.18 =(47.60 =(47.60 0.13)%0.13)% 置信度為置信度為99%時(shí)時(shí),t 0.01,30.01,3=5.84 =(47.60=(47.600.23)%0.23)%說(shuō)明說(shuō)明:1.在在S和和f不變的條件下不變的條件下,置信度置信度P越高越高,置信區(qū)間的范圍就越寬置信區(qū)間的范圍就越寬. 2.在在P和和S不便的條件下不便的條件下,自由度自由度f(wàn)變大變大,將使置信區(qū)間變窄將使置信區(qū)間變窄. 3.在在P和和f不變的條件下不變的條件下,提高測(cè)量精度提高測(cè)量精度S,將使置信區(qū)間變窄將使置信區(qū)間變窄.%60.474%55.47%52.47%69.47%64.47x%
29、08.01)(2nxxs解解:45(1 1)對(duì)含量真值為)對(duì)含量真值為T T 的某物質(zhì)進(jìn)行分析,得到平均值的某物質(zhì)進(jìn)行分析,得到平均值x0 Tx(2 2)用兩種不同的方法、或兩臺(tái)不同的儀器、或兩個(gè)不同的實(shí))用兩種不同的方法、或兩臺(tái)不同的儀器、或兩個(gè)不同的實(shí)驗(yàn)室對(duì)同一樣品進(jìn)行分析,得到平均值驗(yàn)室對(duì)同一樣品進(jìn)行分析,得到平均值021 xx21, xx問題:是由隨機(jī)誤差引起,或存在系統(tǒng)誤差?問題:是由隨機(jī)誤差引起,或存在系統(tǒng)誤差?0Tx021 xx顯著性顯著性檢驗(yàn)檢驗(yàn)顯著性差異顯著性差異非顯著性差異非顯著性差異系統(tǒng)誤差系統(tǒng)誤差校正校正隨機(jī)誤差隨機(jī)誤差正常正常顯著性檢驗(yàn)顯著性檢驗(yàn)但但46 ,f ,ft
30、 t 檢驗(yàn)法檢驗(yàn)法假設(shè)不存在系統(tǒng)誤差,那么假設(shè)不存在系統(tǒng)誤差,那么T是由隨機(jī)誤差引起的,測(cè)量誤差應(yīng)滿足是由隨機(jī)誤差引起的,測(cè)量誤差應(yīng)滿足t t 分布,分布,0Txxsxt/t t 檢驗(yàn)法的方法檢驗(yàn)法的方法(1)(1)根據(jù)根據(jù) 算出算出t t 值值; ;nsTx,(2)(2)給出顯著性水平或置信度給出顯著性水平或置信度(3)(3)將計(jì)算出的將計(jì)算出的t t 值與表上查得值與表上查得的的t t 值進(jìn)行比較,若值進(jìn)行比較,若),(f ft tt t 表表計(jì)計(jì) 根據(jù)根據(jù) 計(jì)算出的計(jì)算出的t t 值應(yīng)落在指定值應(yīng)落在指定的概率區(qū)間里。否則,假的概率區(qū)間里。否則,假設(shè)不滿足,表明存在著顯設(shè)不滿足,表明存在
31、著顯著性差異。著性差異。習(xí)慣上說(shuō)習(xí)慣上說(shuō) 表明有系統(tǒng)誤差存在。表明有系統(tǒng)誤差存在。表計(jì)ttnsTx,表示表示 落在落在 為中心為中心的某一指定概率之外。在一的某一指定概率之外。在一次測(cè)定中,這樣的幾率是極次測(cè)定中,這樣的幾率是極小的,故認(rèn)為是不可能的,小的,故認(rèn)為是不可能的,拒絕接受。拒絕接受。xn ns sx x 47某化驗(yàn)室測(cè)定某化驗(yàn)室測(cè)定CaO的質(zhì)量分?jǐn)?shù)為的質(zhì)量分?jǐn)?shù)為30.43%的某樣品中的某樣品中CaO的含量,得如下結(jié)果:的含量,得如下結(jié)果:%05. 0%,51.30, 6sxn問此測(cè)定有無(wú)系統(tǒng)誤差?問此測(cè)定有無(wú)系統(tǒng)誤差?( (給定給定 = 0.05%)解解9 . 3605. 043.
32、3051.30nsxsxtx計(jì)算57. 25 ,05. 0ttfa,比較:比較:表計(jì)算tt說(shuō)明說(shuō)明 和和T T 有顯著差異,此有顯著差異,此測(cè)定有系統(tǒng)誤差。測(cè)定有系統(tǒng)誤差。假設(shè):假設(shè): = T = T 48兩個(gè)實(shí)驗(yàn)室對(duì)同一標(biāo)樣進(jìn)行分析,得到:兩個(gè)實(shí)驗(yàn)室對(duì)同一標(biāo)樣進(jìn)行分析,得到:111,snx和和222,snx假設(shè)不存在系統(tǒng)誤差,那么:假設(shè)不存在系統(tǒng)誤差,那么:T212) 1() 1(21222211212121 n nn ns sn ns sn ns sn nn nn nn ns sx xx xt t 是由于隨機(jī)誤差引起的,應(yīng)滿足自由度是由于隨機(jī)誤差引起的,應(yīng)滿足自由度 f =(n1 + n2
33、 2) 的的 t 分布,分布,021 x xx x49(1) F 檢驗(yàn)法檢驗(yàn)兩組實(shí)驗(yàn)數(shù)據(jù)的精密度檢驗(yàn)法檢驗(yàn)兩組實(shí)驗(yàn)數(shù)據(jù)的精密度S1和和S2之間有無(wú)之間有無(wú)顯著差異:顯著差異:22小大計(jì)算ssF查表查表(P64表表3-4)表計(jì)算FF精密度無(wú)顯著差異。精密度無(wú)顯著差異。(2) t 檢驗(yàn)確定兩組平均值之間有無(wú)顯著性差異檢驗(yàn)確定兩組平均值之間有無(wú)顯著性差異2) 1() 1(21222211212121 n nn ns sn ns sn ns sn nn nn nn ns sx xx xt t計(jì)計(jì)算算(3) 查查P61表表(3-3)221, n nn nf ft tt tf fa a表表(4) 比較比較
34、表計(jì)算tt非顯著差異,無(wú)系統(tǒng)誤差非顯著差異,無(wú)系統(tǒng)誤差50置信度置信度95%時(shí)部分時(shí)部分F值(單邊)值(單邊)置信度置信度90%時(shí)部分時(shí)部分F值(雙邊)值(雙邊)351 第二法第二法: 1.35% 1.31% 1.34% 1.33%問問:兩種方法之間是否有顯著性差異兩種方法之間是否有顯著性差異(置信度置信度90%)?解解: n1 1=3 x1 1=1.24% S1 1=0.021% n2 2=4 x2 2=1.33% S2 2=0.017% F計(jì)計(jì)=(0.021)2/(0.017)2=1.53 查表查表(7-4) f大大=2 f小小=3 F表表=9.55 F計(jì)計(jì) F表表 說(shuō)明兩組數(shù)據(jù)的標(biāo)準(zhǔn)偏差
35、之間無(wú)顯著性差異說(shuō)明兩組數(shù)據(jù)的標(biāo)準(zhǔn)偏差之間無(wú)顯著性差異 則則 S=? 52212121nnnnSxxt 查表查表(3-3),當(dāng)當(dāng)P=0.90, f=n1+n2-2=5 時(shí)時(shí), t 0.10,5=2.02. t 計(jì)計(jì) t ,f 故兩種方法之間有顯著性差異故兩種方法之間有顯著性差異.019. 02)()(21222211nnxxxxSii= 6.21531、d4法法(1)將可疑值除外,求其余數(shù)據(jù)的平均值和平均偏差)將可疑值除外,求其余數(shù)據(jù)的平均值和平均偏差 ;1nx(2)求可疑值)求可疑值x與平均值與平均值 之間的差的絕對(duì)值之間的差的絕對(duì)值 1nx1nxx(3)判斷)判斷114nndxx舍棄。舍棄
36、。統(tǒng)計(jì)學(xué)方法證明,當(dāng)測(cè)定次數(shù)非常多(例如大于統(tǒng)計(jì)學(xué)方法證明,當(dāng)測(cè)定次數(shù)非常多(例如大于20時(shí),總體時(shí),總體標(biāo)準(zhǔn)偏差與總體平均偏差標(biāo)準(zhǔn)偏差與總體平均偏差 有下列關(guān)系有下列關(guān)系 = 0.7979 0.80 4 3 ,偏差超過,偏差超過4 的測(cè)量值可以舍棄。的測(cè)量值可以舍棄。1nd542. Q Q檢法檢法:minmaxx xx xx xx xQ Q 相相鄰鄰可可疑疑計(jì)計(jì)若若Q計(jì)計(jì)Q表表, ,該可疑值應(yīng)舍去該可疑值應(yīng)舍去. .l注注: :數(shù)據(jù)處理時(shí)數(shù)據(jù)處理時(shí), ,首先進(jìn)行可疑值取舍后首先進(jìn)行可疑值取舍后, ,才能進(jìn)行其他計(jì)算才能進(jìn)行其他計(jì)算. .355(1)將測(cè)量的數(shù)據(jù)按大小順序排列。)將測(cè)量的數(shù)據(jù)按
37、大小順序排列。 (2)設(shè)第一個(gè)數(shù)據(jù)可疑,計(jì)算)設(shè)第一個(gè)數(shù)據(jù)可疑,計(jì)算sxxT1計(jì)算或或 設(shè)第設(shè)第n 個(gè)數(shù)據(jù)可疑,計(jì)算個(gè)數(shù)據(jù)可疑,計(jì)算sxxTn計(jì)算(3)查)查P67表表3-5表:表: T計(jì)算計(jì)算 T.n , 舍棄。舍棄。nxxxx.,32156 1. 比較:比較: t 檢驗(yàn)檢驗(yàn)方法的系統(tǒng)誤差 F 檢驗(yàn)檢驗(yàn)方法的偶然誤差 G 檢驗(yàn)異常值的取舍 2. 檢驗(yàn)順序:檢驗(yàn)順序: G檢驗(yàn) F 檢驗(yàn) t檢驗(yàn) 異常值的異常值的取舍取舍57No.標(biāo)樣濃度標(biāo)樣濃度 g / L吸收吸收值值15.000.045210.00.093320.00.140430.00.175540.00.2366試樣試樣0.200問題問題
38、1、每個(gè)測(cè)量值都有誤差,標(biāo)準(zhǔn)曲線應(yīng)怎樣作才合理?、每個(gè)測(cè)量值都有誤差,標(biāo)準(zhǔn)曲線應(yīng)怎樣作才合理?2、應(yīng)怎樣估計(jì)線性的好壞?、應(yīng)怎樣估計(jì)線性的好壞?標(biāo)準(zhǔn)工作曲線y = 0.0056x + 0.0161R2 = 0.9840.0000.1000.2000.3000.4000.010.020.030.040.050.0濃度(u g / mL)A581.標(biāo)準(zhǔn)曲線應(yīng)怎樣作才合理?niyxii.3 , 2 , 1),(最小二乘法最小二乘法設(shè)對(duì)設(shè)對(duì)y 作作n 次獨(dú)立的觀測(cè),得到一系列觀測(cè)值。次獨(dú)立的觀測(cè),得到一系列觀測(cè)值。 一元線性回歸方程表示為:一元線性回歸方程表示為:根據(jù)最小二乘法的原理,最佳根據(jù)最小二乘
39、法的原理,最佳的回歸線應(yīng)是各觀測(cè)值的回歸線應(yīng)是各觀測(cè)值yi 與相與相對(duì)應(yīng)的落在回歸線上的值之差對(duì)應(yīng)的落在回歸線上的值之差的平方和(的平方和(Q)為最小。)為最小。 yiyxQyabxiiin()21bxay59Qyabxiiin()21令令Qayabxiiin 201()niiiibxayxbQ10)(2niiniiininiiixxyyxxbxbynxbya12111)()(,其中其中ynyxnxiiniin1111,60相關(guān)系數(shù)的定義為:相關(guān)系數(shù)的定義為: 2、應(yīng)怎樣估計(jì)線性的好壞?、應(yīng)怎樣估計(jì)線性的好壞?相關(guān)系數(shù)的問題相關(guān)系數(shù)的問題判斷一元回歸線是否有意義,可用相關(guān)系數(shù)來(lái)檢驗(yàn)。判斷一元回
40、歸線是否有意義,可用相關(guān)系數(shù)來(lái)檢驗(yàn)。 Rbxxyyxxyyxxyyiiniiniiiniiinin()()()()()()212112211613. 當(dāng)當(dāng) R 的絕對(duì)值在的絕對(duì)值在 0 與與 1 之間時(shí),可根據(jù)測(cè)量的次數(shù)之間時(shí),可根據(jù)測(cè)量的次數(shù)及置信水平與相應(yīng)的相關(guān)系數(shù)臨界值比較,絕對(duì)值大及置信水平與相應(yīng)的相關(guān)系數(shù)臨界值比較,絕對(duì)值大于臨界值時(shí),則可認(rèn)為這種線性關(guān)系是有意義的。于臨界值時(shí),則可認(rèn)為這種線性關(guān)系是有意義的。 1. 當(dāng)所有的當(dāng)所有的值都在回歸線上時(shí),值都在回歸線上時(shí),R = 1。yxR = 1xyR = -12. 當(dāng)當(dāng) y 與與 x 之間不存在直線關(guān)系時(shí),之間不存在直線關(guān)系時(shí),R = 0。xyR = 062 f = n-20.100.050.010.00110.9880.9970.99980.99999920.9000.9500.9900.99930.8050.8780.9590.991相關(guān)系數(shù)的臨界值表(部分)相關(guān)系數(shù)的臨界值表(部分)做了一條工作曲線,測(cè)量次數(shù)做了一條工作曲線,測(cè)量次數(shù) n = 5, R = 0.920, 因變量因變量與自變量之間有無(wú)相關(guān)性(置信度與自變量之間有無(wú)相關(guān)性(置信度95%)?)?解:解: f = 5 2 = 3, = 0.05, 查表查表 R0 = 0.878,R R0, 有相關(guān)性有相關(guān)性631. .選擇合適的分析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 豫章師范學(xué)院《油畫靜物技法與表現(xiàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 珠海格力職業(yè)學(xué)院《藏文文法上》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧石化職業(yè)技術(shù)學(xué)院《語(yǔ)文學(xué)科教育論》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安歐亞學(xué)院《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京工業(yè)大學(xué)《建筑防火設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安科技大學(xué)高新學(xué)院《汽車發(fā)展史》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧工程技術(shù)大學(xué)《資產(chǎn)評(píng)估學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川航天職業(yè)技術(shù)學(xué)院《嵌入式系統(tǒng)設(shè)計(jì)與開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷
- 合肥信息技術(shù)職業(yè)學(xué)院《建筑類專業(yè)導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 南華大學(xué)船山學(xué)院《素描半身帶手及全身像實(shí)踐教學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- JT-T-610-2004公路隧道火災(zāi)報(bào)警系統(tǒng)技術(shù)條件
- 初中英語(yǔ)比較級(jí)和最高級(jí)專項(xiàng)練習(xí)題含答案
- 鑒賞詩(shī)歌人物形象市公開課一等獎(jiǎng)省賽課微課金獎(jiǎng)?wù)n件
- 大壩安全監(jiān)測(cè)系統(tǒng)驗(yàn)收規(guī)范
- 2024年南京鐵道職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及答案解析
- 校園超市經(jīng)營(yíng)投標(biāo)方案(技術(shù)方案)
- 康復(fù)醫(yī)院建筑設(shè)計(jì)標(biāo)準(zhǔn)
- 社會(huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估 投標(biāo)方案(技術(shù)方案)
- 高層建筑火災(zāi)撲救面臨問題及對(duì)策
- JC-T 738-2004水泥強(qiáng)度快速檢驗(yàn)方法
- 山東省春季高考技能考試-汽車專業(yè)必刷必練題庫(kù)(600題)
評(píng)論
0/150
提交評(píng)論