版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、導(dǎo)數(shù)練習(xí)題(教師版)題型一:求參數(shù)的取值范圍與最值1.已知ar,函數(shù)f(x)(x2ax)ex(xr,e為自然對數(shù)的底數(shù))(1)當a2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;(2)若函數(shù)f(x)在(1,1)上單調(diào)遞增,求a的取值范圍;(3)函數(shù)f(x)能否為r上的單調(diào)函數(shù),若能,求出a的取值范圍;若不能,請說明理由解(1)當a2時,f(x)(x22x)ex,f(x)(2x2)ex(x22x)ex(x22)ex.令f(x)>0,即(x22)ex>0,ex>0,x22>0,解得<x<.函數(shù)f(x)的單調(diào)遞增區(qū)間是(,)(2)函數(shù)f(x)在(1,1)上單調(diào)遞增,f(x)0
2、對x(1,1)都成立f(x)x2(a2)xaexx2(a2)xaex0對x(1,1)都成立ex>0,x2(a2)xa0對x(1,1)都成立,即x2(a2)xa0對x(1,1)恒成立設(shè)h(x)x2(a2)xa只須滿足,解得a.(3)若函數(shù)f(x)在r上單調(diào)遞減,則f(x)0對xr都成立,即x2(a2)xaex0對xr都成立ex>0,x2(a2)xa0對xr都成立(a2)24a0,即a240,這是不可能的故函數(shù)f(x)不可能在r上單調(diào)遞減若函數(shù)f(x)在r上單調(diào)遞增,則f(x)0對xr都成立,即x2(a2)xaex0對xr都成立ex>0,x2(a2)xa0對xr都成立而x2(a2
3、)xa0不可能恒成立,故函數(shù)f(x)不可能在r上單調(diào)遞增2.已知函數(shù)f(x)(1x)2ln(1x)(1)求f(x)的單調(diào)區(qū)間;(2)若x1,e1時,f(x)<m恒成立,求m的取值范圍解(1)f(x)(1x)2ln(1x),f(x)(1x)(x>1)f(x)在(0,)上單調(diào)遞增,在(1,0)上單調(diào)遞減 (2)令f(x)0,即x0,則x(1,0)0(0,e1)f(x)0f(x)極小值又f(1)1,f(e1)e21>1,又f(x)<m在x1,e1上恒成立,m>e21.3已知函數(shù)f(x)4x33x2cos,其中xr,為參數(shù),且0.(1)當cos0時,判斷函數(shù)f(x)是否有
4、極值;(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)的取值范圍;(3)若對(2)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)f(x)在區(qū)間(2a1,a)內(nèi)都是增函數(shù),求實數(shù)a的取值范圍解: (1)當cos0時,f(x)4x3,則函數(shù)f(x)在(,)上是增函數(shù),故無極值(2)f(x)12x26xcos,令f(x)0,得x10,x2.由0及(1),只考慮cos>0的情況當x變化時,f(x)的符號及f(x)的變化情況如下表:x(,0)0f(x)00f(x)極大值極小值因此,函數(shù)f(x)在x處取得極小值f,且fcos3.要使f>0,必有cos3>0,可得 0<cos<,所以<&
5、lt;.(3)由(2)知,函數(shù)f(x)在區(qū)間(,0) 由題設(shè),函數(shù)f(x)在(2a1,a)內(nèi)是增函數(shù),則a須滿足不等式組或由(2),時,0<cos<.要使不等式2a1cos關(guān)于參數(shù)恒成立,必有2a1.綜上,a的取值范圍為a0或a<1.4設(shè),函數(shù)(i)當時,求曲線在處的切線方程; (ii)當時,求函數(shù)的最小值解:(i);(ii)(1)當時,在上單調(diào)遞增,所以的最小值為;(2) 當時,令,則或(舍)當即時,在上,單調(diào)遞增,的最小值為,且有;當即時,在上,單調(diào)遞減,在上,單調(diào)遞增的最小值為,且有;(注:可證單調(diào)增,)當即時,在上,單調(diào)遞減,的最小值為;綜上,5已知函數(shù)(1)當時,證
6、明函數(shù)只有一個零點;(2)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍解:(2)法一:因為其定義域為,所以當時,在區(qū)間上為增函數(shù),不合題意;當時,等價于,即此時的單調(diào)遞減區(qū)間為依題意,得解之得; 當時,等價于,即·此時的單調(diào)遞減區(qū)間為,得;綜上,實數(shù)的取值范圍是 法二: 由在區(qū)間上是減函數(shù),可得在區(qū)間上恒成立 當時,不合題意; 當時,可得即法三:令,由于開口向下且恒過點, 所以要使,只需法四:在上遞減,要使,只需法五:,即或()200904236已知函數(shù) (i)若函數(shù)的圖象過原點,且在原點處的切線斜率是,求的值; (ii)若函數(shù)在區(qū)間上不單調(diào),求的取值范圍解析:()由題意得 又 ,解得,
7、或 ()函數(shù)在區(qū)間不單調(diào),等價于 導(dǎo)函數(shù)在既能取到大于0的實數(shù),又能取到小于0的實數(shù) 即函數(shù)在上存在零點,且在上無重根法一:(根的分布,分類討論)當在上有且只有一個根時,則, 整理得,解得;當在上有兩個不等實根時,則,解得且;當有一根為或1時,代入檢驗,可得綜上,且法二:,令,則或因在上有根且無重根,則或,且有,解得:且7.已知函數(shù)=,其中a0.()若對一切xr,1恒成立,求a的取值集合.(ii)在函數(shù)的圖像上取定兩點,記直線ab的斜率為k,問:是否存在x0(x1,x2),使成立?若存在,求的取值范圍;若不存在,請說明理由.解:()若,則對一切,這與題設(shè)矛盾,又,故.而令當時,單調(diào)遞減;當時,
8、單調(diào)遞增,故當時,取最小值于是對一切恒成立,當且僅當.令則當時,單調(diào)遞增;當時,單調(diào)遞減.故當時,取最大值.因此,當且僅當即時,式成立.綜上所述,的取值集合為.()由題意知,令則令,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,即從而,又所以因為函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,所以存在使單調(diào)遞增,故這樣的是唯一的,且.故當且僅當時, .綜上所述,存在使成立.且的取值范圍為.8.已知函數(shù)f(x)= e2x-ax(ar,e為自然對數(shù)的底數(shù)).(i)討論函數(shù)f(x)的單調(diào)性;(ii)若a=1,函數(shù)g(x)=(x-m)f(x)-e2x+x2+x在區(qū)間(0,+)上為增函數(shù),求整數(shù)m 的最大值.解:(
9、)定義域為,當時,所以在上為增函數(shù);當時,由得,且當時,當時,所以在為減函數(shù),在為增函數(shù)()當時,若在區(qū)間上為增函數(shù),則在恒成立,即在恒成立,令,; ,;令,可知,又當時,所以函數(shù)在只有一個零點,設(shè)為,即,且;由上可知當時,即;當時,即,所以,有最小值,把代入上式可得,又因為,所以,又恒成立,所以,又因為為整數(shù),所以,所以整數(shù)的最大值為19(2013年江蘇理)設(shè)函數(shù),其中為實數(shù).(1)若在上是單調(diào)減函數(shù),且在上有最小值,求的取值范圍;(2)若在上是單調(diào)增函數(shù),試求的零點個數(shù),并證明你的結(jié)論解:(1)由即對恒成立, 而由知<1 由令則 當<時<0,當>時>0, 在上
10、有最小值 >1 > 綜上所述:的取值范圍為 (2)證明:在上是單調(diào)增函數(shù) 即對恒成立, 而當時,> 分三種情況: ()當時, >0 f(x)在上為單調(diào)增函數(shù) f(x)存在唯一零點 ()當<0時,>0 f(x)在上為單調(diào)增函數(shù) <0且>0 f(x)存在唯一零點 ()當0<時,令得 當0<<時,>0;>時,<0 為最大值點,最大值為 當時,有唯一零點 當>0時,0<,有兩個零點 由于<0,>0 且函數(shù)在上的圖像不間斷 函數(shù)在上有存在零點 另外,當,>0,故在上單調(diào)增,在只有一個零點 下
11、面考慮在的情況,先證<0 為此我們要證明:當>時,>,設(shè) ,則,再設(shè) 當>1時,>-2>0,在上是單調(diào)增函數(shù) 故當>2時,>>0 從而在上是單調(diào)增函數(shù),進而當>時,>>0 即當>時,>, 當0<<時,即>e時,<0 又>0 且函數(shù)在上的圖像不間斷, 函數(shù)在上有存在零點,又當>時,<0故在上是單調(diào)減函數(shù)函數(shù)在只有一個零點 綜合()()()知:當時,的零點個數(shù)為1;當0<<時,的零點個數(shù)為2 10(2013年廣東省數(shù)學(xué)(理)設(shè)函數(shù)(其中).() 當時,求函數(shù)的單
12、調(diào)區(qū)間;() 當時,求函數(shù)在上的最大值.()當時, 令,得, 當變化時,的變化如下表:極大值極小值 右表可知,函數(shù)的遞減區(qū)間為,遞增區(qū)間為,. () ,令,得, 令,則,所以在上遞增, 所以,從而,所以 所以當時,;當時,; 所以 令,則,令,則 所以在上遞減,而 所以存在使得,且當時,當時, 所以在上單調(diào)遞增,在上單調(diào)遞減. 因為,所以在上恒成立,當且僅當時取得“”. 綜上,函數(shù)在上的最大值. 11(2013年高考新課標1(理)已知函數(shù)=,=,若曲線和曲線都過點p(0,2),且在點p處有相同的切線()求,的值;()若-2時,求的取值范圍.解:()由已知得, 而=,=,=4,=2,=2,=2;
13、 ()由()知, 設(shè)函數(shù)=(), =, 有題設(shè)可得0,即, 令=0得,=,=-2, (1)若,則-2<0,當時,<0,當時,>0,即在單調(diào)遞減,在單調(diào)遞增,故在=取最小值,而=0, 當-2時,0,即恒成立, (2)若,則=, 當-2時,0,在(-2,+)單調(diào)遞增,而=0, 當-2時,0,即恒成立, (3)若,則=<0, 當-2時,不可能恒成立, 綜上所述,的取值范圍為1,. 題型二:證明不等式1.已知函數(shù)f(x)x2ax(a1)ln x,a>1.(1)討論函數(shù)f(x)的單調(diào)性;(2)證明:若a<5,則對任意x1,x2(0,),x1x2,有>1.(1)解
14、f(x)的定義域為(0,)f(x)xa.2分若a11,即a2時,f(x).故f(x)在(0,)上單調(diào)遞增若a1<1,而a>1,故1<a<2時,則當x(a1,1)時,f(x)<0;當x(0,a1)及x(1,)時,f(x)>0,故f(x)在(a1,1)上單調(diào)遞減,在(0,a1),(1,)上單調(diào)遞增若a1>1,即a>2時,同理可得f(x)在(1,a1)上單調(diào)遞減,在(0,1),(a1,)上單調(diào)遞增 (2)證明考慮函數(shù)g(x)f(x)xx2ax(a1)ln xx.則g(x)x(a1)2(a1)1(1)2.由于1<a<5,故g(x)>0,
15、即g(x)在(0,)上單調(diào)遞增,從而當x1>x2>0時,有g(shù)(x1)g(x2)>0,即f(x1)f(x2)x1x2>0,故>1. 當0<x1<x2時,有>1.綜上,若a<5,對任意x1,x2(0,),x1x2有>1.1(2010全國卷)已知函數(shù).()若,求的取值范圍;()證明:解:(),,題設(shè)等價于.令,則當,;當時,是的最大值點, 綜上,的取值范圍是.()思路一:證明的最小值大于等于零,思路很簡單,但操作起來很難,放棄.(需要三次求導(dǎo)).思路二:由()知,即.當時,;當時,法一:可證明.,在上遞增. 法二:(變形,套用)所以2(20
16、10天津卷)已知函數(shù).()求函數(shù)的單調(diào)區(qū)間和極值;()已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,證明當時,;()如果,且,證明.()解:. 令=0,解得當變化時,的變化情況如下表()1()+0-極大值所以在()內(nèi)是增函數(shù),在()內(nèi)是減函數(shù)函數(shù)在處取得極大值且=()證明:由題意可知,得令,即于是,當時,,從而,從而函數(shù)f(x)在1,+)是增函數(shù)又f(1)= ,即.()證明:若,則矛盾故.不妨設(shè).由()可知,從而.因為,所以,又由()可知函數(shù)在區(qū)間(-,1)內(nèi)是增函數(shù),所以,即.4. (2010湖北卷21題14分)已知函數(shù)的圖象在點處的切線方程為()用表示出;()若在上恒成立,求的取值范圍;()證明
17、:解:(),則有,解得()由()知, 令, 則, (i)當 , 若 ,則,是減函數(shù),所以 ,故在上恒不成立(ii)時, 若,故當時,綜上所述,所求的取值范圍為()由()知:當時,有令,有當時,令,有 即 , 將上述個不等式一次相加得 整理得 6(12鄭州二檢理) 已知函數(shù),且圖象在點處的切線的斜率為1(為自然對數(shù)的底數(shù))(1)求實數(shù)的值; (2)設(shè),求的單調(diào)區(qū)間;(3)當時,證明:解:(1); (2),單調(diào)增區(qū)間;(3)轉(zhuǎn)化為由(2)的結(jié)論可得7.設(shè)函數(shù)。(1)求函數(shù)的最小值; (2)設(shè),討論函數(shù)的單調(diào)性;(3)斜率為的直線與曲線交于,兩點, 求證:。(1)解:f'(x)=lnx+1(
18、x0),令f'(x)=0,得當時,f'(x)0;當時,f'(x)0, 當時,(2)f(x)=ax2+lnx+1(x0),當a0時,恒有f'(x)0,f(x)在(0,+)上是增函數(shù);當a0時,令f'(x)0,得2ax2+10,解得;令f'(x)0,得2ax2+10,解得綜上,當a0時,f(x)在(0,+)上是增函數(shù);當a0時,f(x)在上單調(diào)遞增,在上單調(diào)遞減(3)證:要證,即證,等價于證,令,則只要證,由t1知lnt0,故等價于證lntt1tlnt(t1)(*)設(shè)g(t)=t1lnt(t1),則,故g(t)在1,+)上是增函數(shù),當t1時,g(t)
19、=t1lntg(1)=0,即t1lnt(t1)設(shè)h(t)=tlnt(t1)(t1),則h'(t)=lnt0(t1),故h(t)在1,+)上是增函數(shù),當t1時,h(t)=tlnt(t1)h(1)=0,即t1tlnt(t1)由知(*)成立,得證三、任意性問題,存在性問題1已知函數(shù)f(x),x0,1(1)求f(x)的單調(diào)區(qū)間和值域;(2)設(shè)a1,函數(shù)g(x)x33a2x2a,x0,1若對于任意x10,1,總存在x00,1,使得g(x0)f(x1)成立,求a的取值范圍解 :(1)對函數(shù)f(x)求導(dǎo),得f(x)令f(x)0解得x或x當x變化時,f(x),f(x)的變化情況如下表:x0(0,)(,
20、1)1f(x)0f(x)43所以,當x(0,)時,f(x)是減函數(shù);當x時,f(x)是增函數(shù)當x0,1時,f(x)的值域為4,3(2)g(x)3(x2a2)因為a1,當x(0,1)時,g(x)<0.因此當x(0,1)時,g(x)為減函數(shù),從而當x0,1時有g(shù)(x)g(1),g(0)又g(1)12a3a2,g(0)2a,即x0,1時有g(shù)(x)12a3a2,2a任給x10,1,f(x1)4,3,存在x00,1使得g(x0)f(x1)成立,則12a3a2,2a4,3即解式得a1或a;解式得a.又a1,故a的取值范圍為1a.2 (2010山東) 已知函數(shù)()求的值域;()設(shè)若對任意,存在,使求實
21、數(shù)的取值范圍解:()在(0,2)上的最小值為由于“對任意,存在,使”等價于“在1,2上的最小值不大于在(0,2)上的最小值” (*)又,所以當時,因為,此時與(*)矛盾;當時,因為,同樣與(*)矛盾;當時,因為解不等式,可得綜上,的取值范圍是3.已知函數(shù)e為自然對數(shù)的底數(shù)).()若不等式對于一切恒成立,求的最小值;()若對任意的在上總存在兩個不同的使成立,求的取值范圍. 解:()由題意得在內(nèi)恒成立, 即在內(nèi)恒成立,(1分) 設(shè)則(2分) 設(shè)則 在內(nèi)是減函數(shù),(4分) 在內(nèi)為增函數(shù),則 故的最小值為(6分)()在(0,1)內(nèi)遞增,在(1,e)內(nèi)遞減.又 函數(shù)在(0,e)內(nèi)的值域為(0,1(7分)
22、 由 得 當時,在(0,e上單調(diào)遞減,不合題意;(8分)當時,令則令則)當,即時,在(0,e上單調(diào)遞減,不合題意; (9分)當,即時,在上單調(diào)遞減,在上單調(diào)遞增.令則在上單調(diào)遞增,在上單調(diào)遞減;即在上恒成立.(10分)令,則設(shè)則在(0,1)內(nèi)單調(diào)遞減,在上單調(diào)遞增,即 ,即.當時,且在上連續(xù).(11分)欲使對任意的在上總存在兩個不同的使成立,則需滿足,即又,(12分)綜上所述,(13分)4.已知函數(shù)在點的切線方程為.()求函數(shù)的解析式;()設(shè),求證:在上恒成立;()已知,求證:.解:()將代入切線方程得 ,化簡得 解得:. . ()由已知得在上恒成立化簡 即在上恒成立設(shè), ,即在上單調(diào)遞增,
23、在上恒成立 () , 由()知有, 整理得 當時,. 5. 已知函數(shù),其中。(1)若是函數(shù)的極值點,求實數(shù)的值;(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍 解法1:,其定義域為, 是函數(shù)的極值點,即 , 經(jīng)檢驗當時,是函數(shù)的極值點, 解法2:,其定義域為, 令,即,整理,得,的兩個實根(舍去),當變化時,的變化情況如下表:0極小值依題意,即, (2)解:對任意的都有成立等價于對任意的都有 當1,時,函數(shù)在上是增函數(shù) ,且, 當且1,時,函數(shù)在1,上是增函數(shù),.由,得,又,不合題意 當1時,若1,則,若,則函數(shù)在上是減函數(shù),在上是增函數(shù). 由,得,又1, 當且1,時,函數(shù)在上
24、是減函數(shù).由,得,又, 綜上所述,的取值范圍為6(2010遼寧)已知函數(shù)(i)討論函數(shù)的單調(diào)性;(ii)設(shè)如果對任意,,求的取值范圍解:()的定義域為(0,+). .當時,0,故在(0,+)單調(diào)增加;當時,0,故在(0,+)單調(diào)減少;當時,令,解得.則當時,0;時,0.故在單調(diào)增加,在單調(diào)減少.()不妨假設(shè),而,由()知在(0,+)單調(diào)減少,從而 ,等價于, 令,則等價于在(0,+)單調(diào)遞減,即 .思路一:等價于在上恒成立,即,令,則,當時,單調(diào)遞減;當時,單調(diào)遞增., .思路二:令, 則,利用對構(gòu)函數(shù)單調(diào)性可知當時,取得最小值薃肀莂蒃袂肀肂蠆袈聿芄薂螄肈莇螇蝕肇葿薀罿肆腿莃裊肅芁薈螁膄莃莁蚇
25、膄肅薇薃膃芅荿羈膂莈蚅袇膁蒀蒈螃膀膀蚃蠆腿節(jié)蒆羈羋莄蟻襖羋蒆蒄螀芇膆蝕蚆袃莈蒃螞袂蒁螈羀袁膀薁袆袁芃螆螂袀蒞蕿蚈衿蕆莂羇羈膇薇袃羇艿莀蝿羆蒂薆螅羅膁蒈蟻羅芄蚄罿羄莆蕆裊羃蒈螞螁羂膈蒅蚇肁芀蟻薃肀莂蒃袂肀肂蠆袈聿芄薂螄肈莇螇蝕肇葿薀罿肆腿莃裊肅芁薈螁膄莃莁蚇膄肅薇薃膃芅荿羈膂莈蚅袇膁蒀蒈螃膀膀蚃蠆腿節(jié)蒆羈羋莄蟻襖羋蒆蒄螀芇膆蝕蚆袃莈蒃螞袂蒁螈羀袁膀薁袆袁芃螆螂袀蒞蕿蚈衿蕆莂羇羈膇薇袃羇艿莀蝿羆蒂薆螅羅膁蒈蟻羅芄蚄罿羄莆蕆裊羃蒈螞螁羂膈蒅蚇肁芀蟻薃肀莂蒃袂肀肂蠆袈聿芄薂螄肈莇螇蝕肇葿薀罿肆腿莃裊肅芁薈螁膄莃莁蚇膄肅薇薃膃芅荿螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿
26、螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕
27、袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁
28、羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅
29、蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆
30、袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀
31、羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁
32、螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂
33、衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆
34、肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇
35、螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁
36、袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂
37、聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆
38、螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇
39、袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈
40、肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁
41、螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈薇蚇袇肅莀薃羆膅薆葿羆羋荿螇羅羇膁螃羄膀莇蠆羃節(jié)芀薅羂羂蒅蒁羈肄羋螀羀膆蒃蚆肀羋芆薂聿羈蒂蒈肈肀芅袆?wù)仄M薀螂肆蒞莃蚈肅肅薈薄螞膇莁蒀蟻艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蝕袁肆芄薆袀腿蕿蒂衿芁莂螁袈羈 荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂
42、蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇
43、薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁
44、葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈
45、芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)
46、蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆
47、蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁
48、蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅
49、蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿
50、芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃
51、蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇袇莀莆蒄罿膃節(jié)蒃肁荿薁蒂螁膁蕆蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆蒞薆螂聿芁薅襖芅薀薄羇肇蒆蚄聿芃莂蚃螈肆羋螞羈芁芄蟻肅膄薃蝕螃荿葿蠆裊膂蒞蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅節(jié)蒄袈膇肅蒀袇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 垂體危象與垂體卒中講課課件
- 21、《槐鄉(xiāng)五月》第二課時
- 初二年級期中考試家長會教學(xué)案例
- 二零二五年網(wǎng)絡(luò)零售商合作協(xié)議樣本2篇
- 新教材高考地理一輪復(fù)習(xí)課時作業(yè)二十四城鎮(zhèn)化課件新人教版
- 水利工程合同管理制度
- 黃金投資入門教學(xué)教案
- 九年級物理全冊192家庭電路中電流過大的原因課件新版新人教版
- 《科幻小說賞析與寫作》 課件 -第四章 “生命奇跡”的重述與復(fù)魅-《弗蘭肯斯坦》
- 二零二五年礦產(chǎn)品資源整合開發(fā)合作協(xié)議書3篇
- 2025年考研政治全套復(fù)習(xí)題庫及答案(全冊完整版)
- 3《歡歡喜喜慶國慶》說課稿-2024-2025學(xué)年道德與法治二年級上冊統(tǒng)編版
- 蓄勢聚能籌遠略揚帆破浪啟新航-在2025年務(wù)虛會上的講話提綱
- 先進集體發(fā)言稿
- 2025年融媒體行業(yè)分析報告
- 學(xué)生寒假心理健康教育心理調(diào)試過健康寒假課件
- 八年級地理(下冊星球版)復(fù)習(xí)提綱
- 新建3000只肉羊養(yǎng)殖基地建設(shè)項目可行性研究報告
- 山東省濟南市2023-2024學(xué)年高二上學(xué)期期末考試生物試題 附答案
- DB32T 3292-2017 大跨徑橋梁鋼橋面環(huán)氧瀝青混凝土鋪裝養(yǎng)護技術(shù)規(guī)程
- GB/T 44819-2024煤層自然發(fā)火標志氣體及臨界值確定方法
評論
0/150
提交評論