




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、Epipolar geometryCorrespondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x in the second image?Camera geometry (motion): Given a set of corresponding image points xi xi, i=1,n, what are the cameras P and P for the two views?
2、Or what is the geometric transformation between the views?(iii) Scene geometry (structure): Given corresponding image points xi xi and cameras P, P, what is the position of the point X in space?Three questions:The epipolar geometryC,C,x,x and X are coplanarThe epipolar geometryAll points on p projec
3、t on l and lThe epipolar geometryThe camera baseline intersects the image planes at the epipoles e and e.Any plane p conatining the baseline is an epipolar plane. All points on p project on l and l.The epipolar geometryFamily of planes p and lines l and l Intersection in e and eThe epipolar geometry
4、epipoles e,e= intersection of baseline with image plane = projection of projection center in other image= vanishing point of camera motion directionan epipolar plane = plane containing baseline (1-D family)an epipolar line = intersection of epipolar plane with image(always come in corresponding pair
5、s)Example: converging camerasExample: motion parallel with image planeExample: forward motioneeMatrix form of cross product babaaaaaabababababababa 0001213231221311323320)(0)(babbaaGeometric transformation| with 0| with tRMPMpIMMPptRPPCalibrated CameraTTvupvupRptp) 1 , , () 1 ,( with 0)( 0Epp SRRtEE
6、pp with 0Essential matrixUncalibrated Camera 0 pEpscoordinate camerain and toingcorrespond scoordinate pixelin points and pppppMppMp and 1int1int with 01intintMEMFF ppTTFundamental matrixProperties of fundamental and essential matrix Matrix is 3 x 3 Transpose : If F is essential matrix of cameras (P
7、, P). FT is essential matrix of camera (P,P) Epipolar lines: Think of p and p as points in the projective plane then F p is projective line in the right image. That is l=F p l = FT p Epipole: Since for any p the epipolar line l=F p contains the epipole e. Thus (eT F) p=0 for a all p . Thus eT F=0 an
8、d F e =0Fundamental matrix Encodes information of the intrinsic and extrinisic parameters F is of rank 2, since S has rank 2 (R and M and M have full rank) Has 7 degrees of freedom There are 9 elements, but scaling is not significant and det F = 0Essential matrix Encodes information of the extrinisi
9、c parameters only E is of rank 2, since S has rank 2 (and R has full rank) Its two nonzero singular values are equal Has only 5 degrees of freedom, 3 for rotation, 2 for translationScaling ambiguity)( tRPztRPpPzPptRPPTTDepth Z and Z and t can only be recovered up to a scale factorOnly the direction
10、of translation can be obtainedLeast square approach1| constraint under the) Minimize221FFp(piniiWe have a homogeneous system A f =0The least square solution is smallest singular value of A,i.e. the last column of V in SVD of A = U D VTNon-Linear Least Squares ApproachMinimize )()(212iiiiniFppdFppdwi
11、th respect to the coefficients of F Using an appropriate rank 2 parameterizationLocating the epipolesTTFeFeFeFep of nullspace theis ; of nullspace theis 00SVD of F = UDVT.Rectification Image Reprojection reproject image planes onto common plane parallel to line between optical centersRectification R
12、otate the left camera so epipole goes to infinity along the horizontal axis Apply the same rotation to the right camera Rotate the right camera by R Adjust the scale3D Reconstruction Stereo: we know the viewing geometry (extrinsic parameters) and the intrinsic parameters: Find correspondences exploi
13、ting epipolar geometry, then reconstruct Structure from motion (with calibrated cameras): Find correspondences, then estimate extrinsic parameters (rotation and direction of translation), then reconstruct. Uncalibrated cameras: Find correspondences, Compute projection matrices (up to a projective tr
14、ansformation), then reconstruct up to a projective transformation.Reconstruction by triangulationIf cameras are intrinsically and extrinsically calibrated, find P as the midpoint of the common perpendicular to the two raysin space.PTriangulationap ray through C and p, bRp + T ray though C and p expr
15、essed in right coordinate systemTRppcbRpap)(R = ?T = ?lrTlrRTTTRRRPoint reconstructionMXx XMxLinear triangulationXMxMXx 0XMx0MXx 0XmXm0XmXm0XmXmT1T2T2T3T1T3yxyxT2T3T1T3T2T3T1T3mmmmmmmmAyxyx0AX homogeneousLinear combinationof 2 other equations0AX Homogenous system:X is last column of V in the SVD of
16、A= USVT1X geometric error0 x F x subject to ) x ,(x)x (x,T22ddXM x and XMx subject toly equivalentor Geometric errorReconstruct matches in projective frame by minimizing the reprojection error22XM,xMX, xddNon-iterative optimal solutionReconstruction for intrinsically calibrated cameras Compute the e
17、ssential matrix E using normalized points. Select M=I|0 M=R|T then E=TxR Find T and R using SVD of EDecomposition of ERTExE can be computed up to scale factor 222222yxzyzxzyzxyxzxyxzyTxTxTTTTTTTTTTTTTTTTTTTTRRTEE|2)(|T|EETrTT can be computed up to sign(EET is quadratic) Four solutions for the decomp
18、osition,Correct one corresponds to positive depth valuesSVD decomposition of E E = USVT000001-010 Zand 100001010with or WVUWRUWVRUZUTTTTTReconstruction from uncalibrated camerasReconstruction problem:given xixi , compute M,M and XiiiMXx iiXMxfor all iwithout additional information possible only up t
19、o projective ambiguityProjective Reconstruction Theorem Assume we determine matching points xi and xi. Then we can compute a unique Fundamental matrix F. The camera matrices M, M cannot be recovered uniquely Thus the reconstruction (Xi) is not unique There exists a projective transformation H such that112112, 1, 2 HMMHMMHXXiiReconstruction ambiguity: projectiveiiiXHMHMXx P-1 PFrom Projective to Metric Reconstruction Compute homography H such that XEi=HXi for 5 or more control points XEi with known Euclidean position. Then the metric reconstructio
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 青春期生理心理健康
- 感染性休克并發(fā)癥及防治策略
- 大學(xué)生心理健康建設(shè)課件
- 大班健康課:健康過春天
- 健康講堂微量元素專題
- 小班健康領(lǐng)域說課稿設(shè)計
- 氧氣霧化吸入健康教育
- 胎盤臍帶異常超聲診斷
- 預(yù)防脊柱彎曲健康教育
- 酒店房間設(shè)計
- 2025春季學(xué)期國開電大??啤缎姓M織學(xué)》一平臺在線形考(形考任務(wù)1至5)試題及答案
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- JJF 1105-2018觸針式表面粗糙度測量儀校準(zhǔn)規(guī)范
- GB/T 9444-2019鑄鋼鑄鐵件磁粉檢測
- GB/T 7723-2002固定式電子秤
- GB/T 19844-2005鋼板彈簧
- GB/T 14486-2008塑料模塑件尺寸公差
- 特種設(shè)備管理臺帳(5個臺賬)
- 地裂縫、地面塌陷地質(zhì)災(zāi)害危險性評估課件
- 電力拖動自動控制系統(tǒng)-運(yùn)動控制系統(tǒng)(第5版)習(xí)題答案
- 魚丸生產(chǎn)加工項目可行性研究報告
評論
0/150
提交評論