Epipolar geometry_第1頁
Epipolar geometry_第2頁
Epipolar geometry_第3頁
Epipolar geometry_第4頁
Epipolar geometry_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、Epipolar geometryCorrespondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x in the second image?Camera geometry (motion): Given a set of corresponding image points xi xi, i=1,n, what are the cameras P and P for the two views?

2、Or what is the geometric transformation between the views?(iii) Scene geometry (structure): Given corresponding image points xi xi and cameras P, P, what is the position of the point X in space?Three questions:The epipolar geometryC,C,x,x and X are coplanarThe epipolar geometryAll points on p projec

3、t on l and lThe epipolar geometryThe camera baseline intersects the image planes at the epipoles e and e.Any plane p conatining the baseline is an epipolar plane. All points on p project on l and l.The epipolar geometryFamily of planes p and lines l and l Intersection in e and eThe epipolar geometry

4、epipoles e,e= intersection of baseline with image plane = projection of projection center in other image= vanishing point of camera motion directionan epipolar plane = plane containing baseline (1-D family)an epipolar line = intersection of epipolar plane with image(always come in corresponding pair

5、s)Example: converging camerasExample: motion parallel with image planeExample: forward motioneeMatrix form of cross product babaaaaaabababababababa 0001213231221311323320)(0)(babbaaGeometric transformation| with 0| with tRMPMpIMMPptRPPCalibrated CameraTTvupvupRptp) 1 , , () 1 ,( with 0)( 0Epp SRRtEE

6、pp with 0Essential matrixUncalibrated Camera 0 pEpscoordinate camerain and toingcorrespond scoordinate pixelin points and pppppMppMp and 1int1int with 01intintMEMFF ppTTFundamental matrixProperties of fundamental and essential matrix Matrix is 3 x 3 Transpose : If F is essential matrix of cameras (P

7、, P). FT is essential matrix of camera (P,P) Epipolar lines: Think of p and p as points in the projective plane then F p is projective line in the right image. That is l=F p l = FT p Epipole: Since for any p the epipolar line l=F p contains the epipole e. Thus (eT F) p=0 for a all p . Thus eT F=0 an

8、d F e =0Fundamental matrix Encodes information of the intrinsic and extrinisic parameters F is of rank 2, since S has rank 2 (R and M and M have full rank) Has 7 degrees of freedom There are 9 elements, but scaling is not significant and det F = 0Essential matrix Encodes information of the extrinisi

9、c parameters only E is of rank 2, since S has rank 2 (and R has full rank) Its two nonzero singular values are equal Has only 5 degrees of freedom, 3 for rotation, 2 for translationScaling ambiguity)( tRPztRPpPzPptRPPTTDepth Z and Z and t can only be recovered up to a scale factorOnly the direction

10、of translation can be obtainedLeast square approach1| constraint under the) Minimize221FFp(piniiWe have a homogeneous system A f =0The least square solution is smallest singular value of A,i.e. the last column of V in SVD of A = U D VTNon-Linear Least Squares ApproachMinimize )()(212iiiiniFppdFppdwi

11、th respect to the coefficients of F Using an appropriate rank 2 parameterizationLocating the epipolesTTFeFeFeFep of nullspace theis ; of nullspace theis 00SVD of F = UDVT.Rectification Image Reprojection reproject image planes onto common plane parallel to line between optical centersRectification R

12、otate the left camera so epipole goes to infinity along the horizontal axis Apply the same rotation to the right camera Rotate the right camera by R Adjust the scale3D Reconstruction Stereo: we know the viewing geometry (extrinsic parameters) and the intrinsic parameters: Find correspondences exploi

13、ting epipolar geometry, then reconstruct Structure from motion (with calibrated cameras): Find correspondences, then estimate extrinsic parameters (rotation and direction of translation), then reconstruct. Uncalibrated cameras: Find correspondences, Compute projection matrices (up to a projective tr

14、ansformation), then reconstruct up to a projective transformation.Reconstruction by triangulationIf cameras are intrinsically and extrinsically calibrated, find P as the midpoint of the common perpendicular to the two raysin space.PTriangulationap ray through C and p, bRp + T ray though C and p expr

15、essed in right coordinate systemTRppcbRpap)(R = ?T = ?lrTlrRTTTRRRPoint reconstructionMXx XMxLinear triangulationXMxMXx 0XMx0MXx 0XmXm0XmXm0XmXmT1T2T2T3T1T3yxyxT2T3T1T3T2T3T1T3mmmmmmmmAyxyx0AX homogeneousLinear combinationof 2 other equations0AX Homogenous system:X is last column of V in the SVD of

16、A= USVT1X geometric error0 x F x subject to ) x ,(x)x (x,T22ddXM x and XMx subject toly equivalentor Geometric errorReconstruct matches in projective frame by minimizing the reprojection error22XM,xMX, xddNon-iterative optimal solutionReconstruction for intrinsically calibrated cameras Compute the e

17、ssential matrix E using normalized points. Select M=I|0 M=R|T then E=TxR Find T and R using SVD of EDecomposition of ERTExE can be computed up to scale factor 222222yxzyzxzyzxyxzxyxzyTxTxTTTTTTTTTTTTTTTTTTTTRRTEE|2)(|T|EETrTT can be computed up to sign(EET is quadratic) Four solutions for the decomp

18、osition,Correct one corresponds to positive depth valuesSVD decomposition of E E = USVT000001-010 Zand 100001010with or WVUWRUWVRUZUTTTTTReconstruction from uncalibrated camerasReconstruction problem:given xixi , compute M,M and XiiiMXx iiXMxfor all iwithout additional information possible only up t

19、o projective ambiguityProjective Reconstruction Theorem Assume we determine matching points xi and xi. Then we can compute a unique Fundamental matrix F. The camera matrices M, M cannot be recovered uniquely Thus the reconstruction (Xi) is not unique There exists a projective transformation H such that112112, 1, 2 HMMHMMHXXiiReconstruction ambiguity: projectiveiiiXHMHMXx P-1 PFrom Projective to Metric Reconstruction Compute homography H such that XEi=HXi for 5 or more control points XEi with known Euclidean position. Then the metric reconstructio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論